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What’s on the menu?

5

I. Appetizers  Jayadev

II. MC 1 Jayadev

III. MC 2 Himanshu

IV. DIY Desserts Clément

Chefs: Jayadev Acharya, Clément Canonne, Himanshu Tyagi

COLT 2021



Appetizers
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• Statistical Inference

• Distributed / constrained settings 

• Problems and examples

• Related work and pointers



Main Course – I: Discrete distributions
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• A puzzle to solve all problems under communication constraints

• Lower bounds for interactive estimation for arbitrary channels

• Tight bounds under communication, privacy as application



Main Course – II: General distributions Himanshu
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Unified method to prove “interactive” lower bounds

• Discrete, high-dimensional, nonparametric, etc

• Communication, privacy, etc

• General plug-n-play  methods



DIY desserts: Recitation Clément
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• How to apply the lower bounds

• Several exercises



Statistical Inference

10

𝒫: family of distributions over 𝒳

Given 𝑋! ≔ 𝑋", … , 𝑋! : i.i.d. samples from an unknown 𝐩

Solve some inference task about 𝐩

Sample complexity: smallest 𝑛 to solve the task

This is inference in central setting

𝐩 ∈ 𝒫

𝑋! 𝑋" .  .  .   𝑋#



Information Constraints

11



Distributed or Constrained Settings

12

No direct access to 𝑋#s



13(“Motivation” slide)



Statistical Inference under constraints

14

Local constraints



Statistical Inference

15

𝐩 ∈ 𝒫

𝑋! 𝑋" .  .  .   𝑋#

𝑌! 𝑌" 𝑌#

The messages are what we observe with constraints



𝑛 users, user 𝑡 observes 𝑋$ and sends message 𝑌$

𝑊$ 𝑦 𝑥 ≔ Pr(𝑌$ = 𝑦|𝑋$ = 𝑥)

𝑊! ∈ 𝒲𝑋! 𝑌!

𝑊$ ∈ 𝒲: a set of allowed (randomized) channels ⇔ the constraints

The algorithm/protocol dictates how user 𝑡 chooses 𝑊$ from 𝒲
16

Modeling the constraints [ACT20c]



Modeling the local information constraints

When 𝑋$ ∼ 𝐩

𝐩*! 𝑌$ = 𝑦 ≔ ∑+𝐩 𝑥 𝑊$ 𝑦 𝑥 = 𝔼 𝑊$ 𝑦 𝑋

𝑊!𝑋! 𝑌!

17



Example 1: Communication constraints

𝒲ℓ ≔ {𝑊:𝒳 → 0,1 ℓ }

Each 𝑋$ is mapped to ℓ bits.

18

Bandwidth 
constraints

[Shamir14,HMÖW18,ACT20d…]



Example 2: Local Differential Privacy (LDP)

𝑊:𝒳 → 0,1 ∗ is 𝜚-LDP if ∀𝑥, 𝑥. ∈ 𝒳,∀𝑦,

𝑊 𝑦 𝑥
𝑊 𝑦 𝑥′ ≤ 𝑒/ ≈ 1 + 𝜚

𝒲/ = all ϱ − LDP channels

19

Privacy guarantees even 
“against” the server

[Warner65, EPR03, KLNRS11]



The Protocols

20



Distributed Statistical Inference

21

𝑋! 𝑋" .  .  .   𝑋#

𝑊" 𝑊# 𝑊$

𝑌! 𝑌" .  .  .   𝑌#

𝐩

ℜ

∈ 𝒲

Given 𝑌! ≔ 𝑌", … , 𝑌!, solve the inference task



Distributed statistical inference

Once we decide 𝑊! ≔𝑊", … ,𝑊!,

𝐩*" 𝑌! =R
$

𝐩*! 𝑌$

How to choose 𝑊",𝑊2, … ,𝑊! ∈ 𝒲 to minimize 𝑛?

22



The protocols

Simultaneous Message Passing (SMP)/Non-interactive schemes
𝑊!s are chosen simultaneously

private-coin SMP (no shared randomness) 

𝑊!s are chosen independently

𝑌", 𝑌#, … , 𝑌$ are independent

e.g., 𝑊", … ,𝑊$ are fixed

23



Private-coin SMP protocols
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𝑋! 𝑋" .  .  .   𝑋#

𝑊" 𝑊# 𝑊$

𝑌! 𝑌" .  .  .   𝑌#

𝐩

ℜ

Noninteractive (“simultaneous message-passing”),
no common randomness

∈ 𝒲



The protocols

Simultaneous Message Passing (SMP)/Non-interactive schemes
𝑊!s are chosen simultaneously

public-coin SMP (shared randomness)
𝑈: common random string available to all users and referee
𝑊! is a function of 𝑈
𝑌", 𝑌#, … , 𝑌$ are independent given 𝑈

25



Public-coin SMP protocols
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𝑋! 𝑋" .  .  .   𝑋#

𝑊" 𝑊# 𝑊$

𝑌! 𝑌" .  .  .   𝑌#

𝐩

ℜ

∈ 𝒲𝑈

Noninteractive (“simultaneous message-passing”),
but common random seed



The protocols

Interactive schemes
𝑊!s can depend on previous messages

sequentially interactive protocols

𝑈: common random string available to all users and referee
for 𝑡 = 1,… , 𝑛

𝑊! is a function of (𝑈, 𝑌!%")

27



Sequentially Interactive protocols
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𝑋! 𝑋" .  .  .   𝑋#

𝑊" 𝑊# 𝑊$

𝑌! 𝑌" .  .  .   𝑌#

𝐩

ℜ

∈ 𝒲𝑈

Interactive (“one-pass, sequential”),
and common random seed



Types of protocols

29

𝑋! 𝑋" .  .  .   𝑋#

𝑊" 𝑊# 𝑊$

𝑌! 𝑌" .  .  .   𝑌#

𝐩

ℜ

Blackboard protocols

∈ 𝒲𝑈

Fully interactive (“many passes”),
and common random seed



Types of protocols

Each of these models is at least as powerful as the previous

private-coin ≼ public-coin ≼ sequentially interactive ≼ blackboard

Each has its pros and cons (both in theory and practice) and may 
require different techniques to analyze.



Questions about setting?

31



The Problems

32



33

Parameter/density 
estimation

Goodness-of-fit / 
Hypothesis testing

Sample complexity: smallest 𝑛 to solve the task



Example 1: Discrete distributions
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Goal: output T𝐩 such that 

𝔼 TV T𝐩, 𝐩 ≤ 𝜀

Sample complexity = Θ 3
4#

(without constraints)

𝑇𝑉 𝐩, 𝐪 ≔ sup
%⊆ '

𝐩 𝑆 − 𝐪 𝑆 =
1
2
ℓ"(𝐩, 𝐪)

𝐪: a reference distribution

Goal: Test
𝐩 = 𝐪 vs TV 𝐩, 𝐪 > 𝜀

Sample complexity = Θ 3
4#

(without constraints) [Paninski08]

𝒫 = Δ3: distbs on 𝑑 ≔ {1…𝑑}



Example 2: High dimensional distributions

35

Goal: output T𝝁 such that 

𝔼 |T𝝁 − 𝝁|22 ≤ 𝜀2

Sample complexity = Θ 3
4#

(without constraints)

Other families: product Bernoulli

Goal: Test

𝝁 = 𝟎 vs |𝝁|2 > 𝜀

Sample complexity = Θ 3
4#

(without constraints)

*detecting signal vs noise

𝒫 = 𝒩 𝝁, 𝐈3 :𝝁 ∈ R3



Research goals

36

Establish sample complexity bounds for … 

• Different 𝒲s
• Estimation/Testing/other properties
• Private-coin SMP/public-coin SMP/interactive
• Discrete/high-dimensional/non-parametric

Mix-n-match?

Already a bit too much … each interesting in its own right … ! 



For example … discrete distribution testing

37

𝒲/, [AminJosephMao ’20, BerrettButucea’20, AcharyaCanonneLiuSunTyagi’20]:

Private-coin SMP ≪ public-coin SMP≈ SMP/interactive

𝒲ℓ, [AcharyaCanonneLiuSunTyagi’20]:

Private-coin SMP ≪ public-coin SMP≈ SMP/interactive

General 𝒲, [AcharyaCanonneLiuSunTyagi’20]:

Private-coin SMP ≪ public-coin SMP ≪ SMP/interactive

Similarly for Gaussian mean testing … [AcharyaCanonneTyagi’20, 
SzaboVuursteenVanZanten’20]
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Parameter/density 
estimation

Goodness-of-fit / 
Hypothesis testing

Part 3 of tutorial (link)

Learn about Ingster’s method from HT!

http://www.cs.columbia.edu/~ccanonne/tutorial-focs2020/
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Establishing tight results for SMP protocols generally easier …

𝑌", … , 𝑌! independent (given 𝑈)

See general discussion in 

[ACLST20] J. Acharya, C. Canonne, Y. Liu, Z. Sun, H. Tyagi, “Interactive inference under 
information constraints” arXiv: 2007.10976 (in submission)



Methods to establish interactive lower bounds

40

1. Cramer-Rao/van Trees inequality [BarnesHanOzgur19, 
BarnesChenOzgur20, SarbuZaidi21]
• Unified results for Δ(, ℬ( , 𝒢(
• Results hold for ℓ# loss

2. Strong Data Processing + Assouad’s method 
[BravermanGardMaNguyenWoodruff16, DuchiRogers19]
• Lower bounds for ℬ( , 𝒢( under ℓ# loss
• Naturally extends to other ℓ) loss functions

3. Chi-squared contractions + Assouad’s method 
[AcharysCanonneLiuSunTyagi20, AcharyaCanonneSunTyagi20]
• Unified bounds for Δ(, ℬ( , 𝒢(
• Works under ℓ) for 𝑝 ≥ 1
• For arbitrary channels



Pointers
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Cramer-Rao/van Trees inequality

Strong Data Processing + Assouad’s method

Part 2 of tutorial (link)

http://www.cs.columbia.edu/~ccanonne/tutorial-focs2020/


Next two parts … 

42

MC1: 
• Discrete distributions
• Simulate and infer for upper bounds
• Lower bounds

MC2:
• Unified approach for general distributions and channel families 



MC 1: Discrete Distributions

43



Discrete distribution estimation

44

𝒫 = Δ3: distbs on 𝑑 ≔ {1…𝑑}

Goal: output T𝐩 such that 

𝔼 TV T𝐩, 𝐩 ≤ 𝜀

Sample complexity = Θ 3
4#

(without constraints)



Empirical distribution works - DIY

45

𝑋", … , 𝑋! ∼ 𝐩, 𝑁+ ≔ # times 𝑥 appears

Empirical distribution: T𝐩 𝑥 = 𝑁+/𝑛

𝑁+~Bin 𝑛, 𝐩 𝑥

𝔼 T𝐩 𝑥 − 𝐩 𝑥 2 =
𝐩 𝑥 1 − 𝐩 𝑥

𝑛 ⇒ 𝔼 ℓ22 T𝐩, 𝐩 ≤
1
𝑛

𝔼 ℓ" T𝐩, 𝐩 2 ≤ 𝔼 ℓ" T𝐩, 𝐩 2 (Jensen) 
≤ 𝑑 ⋅ 𝔼 ℓ22 T𝐩, 𝐩 (Cauchy Schwarz)
≤ 3

!



Under communication constraints

46

𝑋! 𝑋" .  .  .   𝑋#

𝑊" 𝑊# 𝑊$

𝑌! 𝑌" .  .  .   𝑌#

𝐩

ℜ

∈ 𝒲ℓ

∈ 0,1 ℓ



A simulation puzzle … 
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Goal: To simulate a sample from messages

𝑋! 𝑋" .  .  .   𝑋#

𝑊" 𝑊# 𝑊$

𝑌! 𝑌" .  .  .   𝑌#

𝐩

ℜ

∈ 𝒲ℓ

∈ 0,1 ℓ

𝑋 ∼ 𝐩



One simulation to solve them all … 
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Theorem. Suppose simulation is possible with 𝑓 𝑑, ℓ samples. 

Let 𝑇 be some task with sample complexity 𝑇(𝑑, 𝜀).  

Then 𝑇 can be solved with 𝑓 𝑑, ℓ ⋅ 𝑇 𝑑, 𝜀 samples under 𝒲ℓ. 

What is 𝑓 𝑑, log2 𝑑 ?



One simulation to solve them all … 

49

Theorem. There is a private-coin SMP protocol with 

𝑓 𝑑, ℓ ≈ max
𝑑
2ℓ
, 1 .

No protocol (even interactive) can do better!

Estimation with Θ 3
4#
⋅ 3
2ℓ

and testing with Θ 3
4#
⋅ 3
2ℓ



Algorithm for one-bit
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Take 2𝑑 players and pair them into 𝑑 groups:

• First pair tell if their input is symbol 1
• Second tell if their input is symbol 2
• And so on … 



Algorithm for one-bit
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𝑌2#I" = 𝐼 𝑋2#I" = 𝑖
𝑌2# = 𝐼 𝑋2# = 𝑖

𝑋! 𝑋" 𝑋"$%!𝑋& 𝑋' 𝑋"$…

𝑌! 𝑌" 𝑌"$%!𝑌& 𝑌' 𝑌"$…

= 1? = 2? = 𝑑?



Algorithm for one-bit

• Output 𝑖 ∈ [𝑑] if:
• Player 2𝑖 − 1 is the only odd player sending 1
• Player 2𝑖 sends 0

• If no such 𝑖, output ⊥

Conditioned on not outputting ⊥, output ∼ 𝑝



Algorithm for one-bit

Player 2𝑖 − 1 is the only odd player sending 1

Pr 𝑌#&%" = 1, 𝑌#&*%" = 0 𝑓𝑜𝑟 𝑖' ≠ 𝑖 = 𝐩 𝑖 7
&*(&

(1 − 𝐩 𝑖' )

Player 2𝑖 sends 0
Pr 𝑌#& = 0 = (1 − 𝐩 𝑖 )

Pr output 𝑖| not ⊥ = 𝐩 𝑖 ⋅ 7
&*∈[+]

1 − 𝐩 𝑖' ∝ 𝐩(𝑖)



Corollary
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Inference Task Centralized One-bit private-
SMP

Estimation Θ
𝑑
𝜀# Θ

𝑑#

𝜀#

Testing Θ
𝑑
𝜀#

Θ
𝑑+/#

𝜀#



Corollary

55

Inference Task Centralized One-bit 
private-SMP

One-bit 
public-SMP

Estimation Θ
𝑑
𝜀# Θ

𝑑#

𝜀#
Θ

𝑑#

𝜀#

Testing: Θ
𝑑
𝜀#

Θ
𝑑+/#

𝜀#
Θ

𝑑
𝜀#

Bounds are tight … simulate and infer is optimal for private-coin SMP 



Related work

Under SMP protocols these bounds are tight for communication constraints 
[HanMukherjeeOzgur19, AcharyaCanonneTyagi’19] and LDP [DuchiJordanWainwright14]

Sample complexity with interactivity and general channels?

56

[ACLST20] J. Acharya, C. Canonne, Y. Liu, Z. Sun, H. Tyagi, “Interactive inference under 
information constraints” arXiv: 2007.10976 (in submission)



Reminder of my time: prove lower bounds

Recipe:

• Design hard instances that has some structure
• Show that problem is hard within these 
• Assouad’s method and reduction to testing
• Bound “information contraction” due to constraints

57



A hard instance

58



A hard instance

[Paninski’08] Let 𝒵 = −1,1 +/#, and 𝒫𝒵 = 𝐩.: 𝑧 ∈ 𝒵 , where

𝐩. 2𝑖 − 1 =
1 + 𝑧& ⋅ 2𝜀

𝑑 , 𝐩. 2𝑖 =
1 − 𝑧& ⋅ 2𝜀

𝑑 , 𝑖 = 1,… , 𝑑/2.

1 2 3 4 5 6

𝑧!=1 𝑧"=1 𝑧#=−1

…

…

1/𝑑

d23 𝐩., 𝐩.* = #4
+
⋅ Ham(𝑧, 𝑧')

59
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𝑍 = (𝑍", … , 𝑍3/2) ∼OPQ 𝒵, ie, each 𝑍# ∼##R Bern(0.5)

Learning lower bounds

𝑋! 𝑋" .  .  .   𝑋#

𝑊" 𝑊# 𝑊$

𝑌! 𝑌" .  .  .   𝑌#

𝐩-

ℜ

∈ 𝒲𝑈

T𝐩



61

Exercise: Let 𝑧 ∈ 𝒵 and T𝐩 satisfies dST T𝐩, 𝐩U < 4
"V

. 
Then, 

𝑧∗ = argmin
U&

dST T𝐩, 𝐩U&
satisfies

Ham 𝑧, 𝑧∗ < 3
"V

.

Learning lower bounds 



From learning to testing

62



Assouad’s method

If we can estimate 𝐩W ∈XYZ 𝒫𝒵, then we can estimate 𝑍!

Theorem. Pick 𝑍 ∼OPQ 𝒵.
If

𝔼W 𝔼𝐩' dST T𝐩 𝑌!, 𝑈 , 𝐩W <
𝜀
10

then there exists an estimator �𝑍(𝑌!, 𝑈) such that

�
"\#\3/2

Pr( �𝑍# = 𝑍#) > 0.8×
𝑑
2 .

• Note: We could write this bound as ∑# 𝐼 𝑍# ∧ 𝑌!|𝑈 = Ω 𝑑
63



Assouad’s method

Exercise. If 

�
"\#\3/2

Pr( �𝑍# = 𝑍#) > 0.8×
𝑑
2 ,

then there exists a subset 𝑆 ⊆ {1,… , 𝑑/2} with 𝑆 > 𝑑/6 s.t. if 𝑖 ∈ 𝑆,

Pr( �𝑍# = 𝑍#) > 0.7.

Now we need a lower bound on 𝑛 for this to happen

64



Information bound on one 
coordinate

66



Notation

67

Fix 𝑖 ∈ 𝑑/2 , when can we figure 𝑍#?

𝐩U]
": distribution of 𝑌! when input distribution 𝐩U

𝑋! 𝑋" .  .  .   𝑋#

𝑊" 𝑊# 𝑊$

𝑌! 𝑌" .  .  .   𝑌#

𝐩.

ℜ



Information bound on one coordinate
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average output distribution fixing 𝑍# = ±1:

When 𝑍# = 1: 𝐩^#]
" ≔ "

2(/#*+
∑U:U,`^"𝐩U

]"

When 𝑍# = −1: 𝐩I#]
"
≔ "

2(/#*+
∑U:U,`I"𝐩U

]"

If we can guess 𝑍# from 𝑌!

⇔dST 𝐩^#]
", 𝐩I#]

"
must be large

⇒ bound distance between 𝐩^#]
"

and 𝐩I#]
"



Total variation and hypothesis testing
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𝐩", 𝐩2 be any two distributions over 𝒴

𝑗 ∈ {1,2} be picked at random

Given 𝑌 ∼ 𝐩a, design a ̂𝚥(𝑌) that is a guess for 𝑗

For any ̂𝚥 𝑌 :

Pr( ̂𝚥 𝑌 = 𝑗) ≤
1
2 1 + 𝑑ST 𝐩", 𝐩2



Information bound on one coordinate

70

In our case, 𝐩" = 𝐩^#]
"
, 𝐩2 = 𝐩I#]

"
, and 

Pr( �𝑍# = 𝑍#) > 0.7 ⇒ 𝑑ST 𝐩^#]
"
, 𝐩I#]

"
≥ 0.4

Since this holds for at least 𝑑/6 coordinates, 

�
#

𝑑ST 𝐩^#]
"
, 𝐩I#]

" 2
≥
𝑑
6×0.16.



Some ingredients
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𝐷 𝐩"||𝐩2 ≔�
b

𝐩" 𝑦 log
𝐩" 𝑦
𝐩2 𝑦

, 𝜒2 𝐩", 𝐩2 ≔�
b

𝐩" 𝑦 − 𝐩2 𝑦
𝟐

𝐩2 𝑦

Pinsker’s inequality, convexity of logarithms:

2 ⋅ dST 𝐩", 𝐩2 2 ≤ 𝐷 𝐩"||𝐩2 ≤ 𝜒2 𝐩", 𝐩2

Chain rule of KL divergence: If 𝐩" and 𝐩2 are over 𝒴"×𝒴2:

𝐷 𝐩"(𝑌", 𝑌2)||𝐩2(𝑌", 𝑌2)
= 𝐷 𝐩"(𝑌")||𝐩2(𝑌") + 𝔼]+ 𝐷 𝐩"(𝑌2|𝑌")||𝐩2(𝑌2|𝑌")



KL ≤ chi-squared (DIY)

72

Since log 1 + 𝑥 ≤ 𝑥 (why?)

𝐷 𝐩||𝐪 ≔�
+

𝐩 𝑥 log 1 +
𝐩 𝑥 − 𝐪 𝑥

𝐪 𝑥

≤�
+

𝐩 𝑥
𝐩 𝒙 − 𝐪 𝒙

𝐪 𝒙
= 𝜒2(𝐩, 𝐪)

Exercise: Prove the chain rule of KL.



Why go to KL? 
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By Pinsker’s inequality,

4 ⋅ 𝑑ST 𝐩^#]
"
, 𝐩I#]

" 2
≤ 𝐷 𝐩^#]

"
||𝐩I#]

"
+𝐷 𝐩I#]

"
||𝐩^#]

"

Summing over 𝑖, 

�
#

𝐷 𝐩^#]
"
||𝐩I#]

"
+𝐷 𝐩I#]

"
||𝐩^#]

"

≥�
#

4 ⋅ 𝑑ST 𝐩^#]
", 𝐩I#]

" 2
≥ 4 ⋅

𝑑
6 ×0.16 ≥

𝑑
10

𝐩^#]
"

are mixture distributions!

Handling mixtures is painful, leads to issues to extend SMP lower 
bounds to interactive setting



Convexity to the rescue
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Exercise: KL divergence is convex. 
For any distributions 𝐩", 𝐩2 and 𝐪", 𝐪2 and 𝜆 ∈ 0,1 ,

𝐷 𝜆𝐩" + 1 − 𝜆 𝐪"||𝜆𝐩2 + 1 − 𝜆 𝐪2
≤ 𝜆 ⋅ 𝐷 𝐩"||𝐩2 + 1 − 𝜆 ⋅ 𝐷 𝐩"||𝐩2

Prove using concavity of logarithms



Convexity to handle mixtures

75

𝑧 ∈ −1,1 d/2, 𝑧⊕# obtained by flipping the 𝑖th coordinate of 𝑧

Theorem. 

1
2 𝐷 𝐩^#]

"||𝐩I#]
" +𝐷 𝐩I#]

"||𝐩^#]
" ≤ 𝔼W 𝐷 𝐩W]

"||𝐩W⊕,
]"

Proof. Convexity of divergence to the definitions of 𝐩^#]
"

and 𝐩I#]
"
∎

Information about 𝑍# bounded by average divergence in message 
distribution upon changing only 𝑍# when all others are fixed!



Convexity to handle mixtures
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Summing over 𝑖

𝑑
20 ≤ 𝔼W �

#

𝐷 𝐩W]
"||𝐩W⊕,

]"

• For given 𝑍 the sum is divergences when changing one coordinate



Focus on one 𝑧
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By expectation<max, and linearity of expectations, 
𝑑
20 ≤ max

U
�
#

𝐷 pU]
"||pU⊕,

]"

** the following is the original bound in terms of MI:

5
$

𝐼 𝑍$ ∧ 𝑌% ≤
1
2
⋅ max

&
5
$

𝐷 p&'
!||p&⊕#

'!

𝑧
𝑧⊕"

𝑧⊕#

𝑧⊕+

𝒲$

𝑌$



Bounding ∑!𝐷 p"#
N||p"⊕P

#N
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By the chain rule of divergence

�
#

𝐷 𝐩U]
"||𝐩U⊕,

]" =�
$

𝔼
𝐩./

!*+ �
#

𝐷 𝐩U
]!|]!*+||𝐩U⊕,

]!|]!*+ .

• 𝐩U
]!|]!*+: Distribution of 𝑌$ with input 𝐩U conditioned on 𝑌$I"

• Channel at player 𝑡 a function only of 𝑌$I", denoted 𝑊]!*+

𝑧
𝑧⊕"

𝑧⊕#

𝑧⊕+

𝑊0!"#

𝑌! conditioned on 𝑌!1"



Recall

For  𝑧 ∈ −1,1 +/#, 

𝐩. 2𝑖 − 1 =
1 + 𝑧&2𝜀

𝑑
, 𝐩. 2𝑖 =

1 − 𝑧&2𝜀
𝑑

, 𝑖 = 1,… , 𝑑/2.

𝐩0 and 𝐩0⊕" differ only on 2𝑖 − 1 and 2𝑖

1 2 3 4 5 6

𝑧!=1 𝑧"=1 𝑧#=−1

…

…

1/𝑑
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Bounding ∑!𝐷 𝐩"
#Q|#QRS||𝐩"⊕P

#Q|#QRS

80

𝐩U and 𝐩U⊕, differ only on 2𝑖 − 1 and 2𝑖 by 4𝜀𝑧#/𝑑

• Fix 𝑌$I"

𝐩U
]!|]!*+ 𝑦 = 𝐩U⊕,

]!|]!*+ 𝑦 +
4𝜀𝑧#
𝑑 𝑊]!*+ 𝑦 2𝑖 − 1 −𝑊]!*+ 𝑦 2𝑖

𝑧
𝑧⊕"

𝑧⊕#

𝑧⊕+

𝑊0!"#

𝑌! conditioned on 𝑌!1"



Bounding ∑!𝐷 𝐩"
#Q|#QRS||𝐩"⊕P

#Q|#QRS
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Since KL ≤ 𝜒2,	plugging the expression above

�
#

𝐷 𝐩U
]!|]!*+ ||𝐩U⊕,

]!|]!*+ ≤�
#

�
b

𝐩U
]! 𝑦 − 𝐩U⊕,

]! 𝑦
2

𝐩U⊕,
]! 𝑦

≤
8𝜀2

𝑑 ⋅�
#

�
b

𝑊 𝑦 2𝑖 − 1 −𝑊 𝑦 2𝑖 2

∑+𝑊 𝑦 𝑥

Recall

𝐩W 2𝑖 − 1 =
1 + 𝑍#𝜀
𝑑 , 𝐩W 2𝑖 =

1 − 𝑍#𝜀
𝑑

|𝑊 𝑦 2𝑖 − 1 −𝑊 𝑦 2𝑖 | large ⇔ seeing 𝑦 tells about 𝑍#



An average information contraction bound
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Theorem. [ACLST20] Under any interactive protocol,

�
#

𝐼 𝑍# ∧ 𝑌! ≤ 𝑛 ⋅
8𝜀2

𝑑 ⋅ sup
*∈𝒲

�
#

�
b

𝑊 𝑦 2𝑖 − 1 −𝑊 𝑦 2𝑖 2

∑+𝑊 𝑦 𝑥

Theorem. If there exists an estimator then

𝑑
20 ≤ 𝑛 ⋅

8𝜀2

𝑑 ⋅ sup
*∈𝒲

�
#

�
b

𝑊 𝑦 2𝑖 − 1 −𝑊 𝑦 2𝑖 2

∑+𝑊 𝑦 𝑥



Applications
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For any𝑊 ∈𝒲ℓ

�
#

�
b

𝑊 𝑦 2𝑖 − 1 −𝑊 𝑦 2𝑖 2

∑+𝑊 𝑦 𝑥 ≤ 2ℓ

For any𝑊 ∈𝒲/,	𝜚 ≤ 1

�
#

�
b

𝑊 𝑦 2𝑖 − 1 −𝑊 𝑦 2𝑖 2

∑+𝑊 𝑦 𝑥 = 𝑂(𝜚2)



Interactive lower bound for estimation

𝑑
20 ≤ 𝑛 ⋅

8𝜀2

𝑑 ⋅ 2ℓ

𝑛 = Ω
𝑑2

2ℓ𝜀2

𝑑
20 ≤ 𝑛 ⋅

8𝜀2

𝑑 ⋅ 𝜚2

𝑛 = Ω
𝑑2

𝜀2𝜚2
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𝐻 𝑊 is a $"×
$
" PSD matrix:

𝐻 𝑊 () ≔

(
*∈,

𝑊 𝑦 2𝑖 − 1 −𝑊 𝑦 2𝑖 𝑊 𝑦 2𝑗 − 1 −𝑊 𝑦 2𝑗
∑)𝑊 𝑦 𝑗

�
#

�
b

𝑊 𝑦 2𝑖 − 1 −𝑊 𝑦 2𝑖 2

∑+𝑊 𝑦 𝑥 =∥ 𝐻 𝑊 ∥∗

Plug-n-play bounds



∥ 𝒲 ∥≝ max
*∈𝒲

∥ 𝐻(𝑊) ∥

Testing: 
Classic Private-coin 

SMP
Public-coin 
SMP

Sequentially Interactive

Ω
𝑑
𝜀1

Ω
𝑑2/1

𝜀1 ∥ 𝒲 ∥∗
Ω

𝑑
𝜀1 ∥ 𝒲 ∥4

Ω
𝑑

𝜀1 ∥ 𝒲 ∥56∥ 𝒲 ∥∗

Classic Sequentially Interactive

Ω
𝑑
𝜀1 Ω

𝑑1

𝜀1 ∥ 𝒲 ∥∗

Plug-n-play bounds

Estimation



Next 45 minutes: 
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Reinforcement Learning by Himanshu Tyagi … 



References (click to go)
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https://bibbase.org/show?bib=https%3A%2F%2Fccanonne.github.io%2Ftutorials%2Fcolt2021%2Fbibliography.bib&fullnames=1&theme=default


References
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https://bibbase.org/show?bib=https%3A%2F%2Fccanonne.github.io%2Ftutorials%2Fcolt2021%2Fbibliography.bib&fullnames=1&theme=default


Zhang, Jordan, Wainwright, Tsitsiklis Shamir, Mukherjee, Özgür, Weissman, Han, Garg, Ma, Nguyen 
Fischer, Meir, Oshman, Duchi, Rogers Diakonikolas, Gouleakis Kane, Rao, Cai, Wei, Barnes, Chen, 
Andoni, Malkin, Nosatzki, Acharya, Canonne, Freitag, Tyagi, Liu, Sun, Ye, Barg, Erlingsson, Pihur, 
Korolova, Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith, Berrett, Butucea Amin, Joseph, Mao, 
Bubeck, Li, Neel, Roth, Dagan, Feldman, Ullman Bassily, Xu, Raginsky

Some references and previous work
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Some references and previous work
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Too many for a single slide, or two. Starts, more or less, 
with Tsitsiklis’89, picks up again in the mid-2000’s with a 
slightly different focus: local privacy, various types of 
communication constraints, ML-related motivations…

For a detailed bibliography:
www.cs.columbia.edu/~ccanonne/tutorial-

focs2020/bibliography.html

http://www.cs.columbia.edu/~ccanonne/tutorial-focs2020/bibliography.html


Now you all say ... Phew!
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