Statistical Inference in Distributed or
Constrained Settings:
Techniques and Recipes

An Easy Dinner Classic

Add the remaining ingredi-
ents and continue to simmer
until the vegetables are ten-
der, about 30 minutes
longer.
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Ai PNG JPG EPS PDF Nutrition Information:
Serves 8. Each 1 and 1/2
cup serving has 89 calories,
0g fat, 0 g saturated fat, 0
trans fat, 0 mg cholesterol,
233 mg sodium, 18 g car-
bohydrate, 6 g fiber, 4 g
sugar, and 5 g protein.

Each serving also contains
Classic Split Pea Soup 108% DV vitamin A, 10%

g DV vitamin C, 4% DV calci-
Serves: 8 | Serving Size: 1 and 1/2 cups e B3 B ko

Ingredients:
Chef's Tips:
2 cups split peas
@Q B &9 o et e
=y 1 bay lea gamish. You can add them
\ 4 1/4 teaspoon salt 10 the soup during the last
2 cups chopped carrots 10 minutes of cooking.
1 cup chopped celery
f 1 cup chopped onion As the spltt peas are cook-
If 1 large potato, diced ing, check 1o make sure that
1 1 teaspoon thyme leaves. there is enough water and
112 teaspoon pepper that the split peas do not
tick. Add more water if the
Directions: S0up becomes 100 thick.
Combine split peas, water, bay leaf, and saltin a Peas are low in fat, but nat-
large kettle. urally highin protein and
fiber.

Bring to a boll, reduce heat and simmer for 2 hours,
stiring occasionally
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1. MC 2 Himanshu
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Appetizers

Statistical Inference

Distributed / constrained settings

Problems and examples

Related work and pointers



Main Course — I: Discrete distributions
e Q

S S
o ©

* A puzzle to solve all problems under communication constraints
* Lower bounds for interactive estimation for arbitrary channels

* Tight bounds under communication, privacy as application



Main Course — lI: General distributions Himanshu

Unified method to prove “interactive” lower bounds
* Discrete, high-dimensional, nonparametric, etc
* Communication, privacy, etc

* General plug-n-play methods



DIY desserts: Recitation Clément

* How to apply the lower bounds

e Several exercises



Statistical Inference

P family of distributions over X

Given X™ := (Xq, ..., X;,): i.i.d. samples from an unknown p
Solve some inference task about p
Sample complexity: smallest n to solve the task

This is inference in central setting



Information Constraints



Distributed or Constrained Settings

No direct access to X;s
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Statistical Inference under constraints
5
E Local constraints
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Statistical Inference
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The messages are what we observe with constraints



Modeling the constraints [ACT20c]

n users, user t observes X; and sends message Y;

Xt— WtEW th

We(ylx) == Pr(Y; = y|X; = x)

W, € W: a set of allowed (randomized) channels & the constraints

The algorithm/protocol dictates how user t chooses W; from W



Modeling the local information constraints

When X; ~ p

th(Yt =) = 2 pPOW(¥|x) = E[W;(y|X)]



Example 1: Communication constraints
[Shamir14,HMOW18,ACT20d...]

W, = {W:X - {0,1}* }

Each X; is mapped to ¢ bits.

Bandwidth ()
constraints A

18



Example 2: Local Differential Privacy (LDP)

[Warner65, EPRO3, KLNRS11]

W:X —{0,1}" is o-LDP if Vx, x" € X, Vy,

W(v|x
OB _ o c14y
W(ylx")

W, = {all @ — LDP channels}

Privacy guarantees even
“against” the server

5
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The Protocols



Distributed Statistical Inference

R

Given Y™ :=Y;, ..., Y, solve the inference task

e W



Distributed statistical inference

Once we decide W™ .= W, ..., W,,

p""rm = | [p™0

How to choose W, W,, ..., W,, € W to minimize n?

22



The protocols

Simultaneous Message Passing (SMP)/Non-interactive schemes
W:s are chosen simultaneously

private-coin SMP (no shared randomness)
W,s are chosen independently
Y, Y, ..., Y, are independent

e.g., Wy, ..., W, are fixed



Private-coin SMP protocols

e W

R

Noninteractive (“simultaneous message-passing”),
no common randomness

24



The protocols

Simultaneous Message Passing (SMP)/Non-interactive schemes
W:s are chosen simultaneously

public-coin SMP (shared randomness)
UJ: common random string available to all users and referee
W, is a function of U
Y, Y, ..., Y, are independent given U

25



Public-coin SMP protocols

e W

R
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Noninteractive (“simultaneous message-passing”),
but common random seed
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The protocols

Interactive schemes
W¢s can depend on previous messages

sequentially interactive protocols

UJ: common random string available to all users and referee
fort=1,..,n
W, is a function of (U,Y!™1)

27



Sequentially Interactive protocols
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Types of protocols

Blackboard protocols
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Types of protocols

Each of these models is at least as powerful as the previous
private-coin < public-coin < sequentially interactive < blackboard

Each has its pros and cons (both in theory and practice) and may
require different techniques to analyze.



Questions about setting?



The Problems



Parameter/density Goodness-of-fit /
estimation Hypothesis testing

Sample complexity: smallest n to solve the task

33



Example 1: Discrete distributions

P = Ay: distbs on [d] :== {1...d}

Goal: output P such that g: a reference distribution
E[TV(P,p)] < ¢ Goal: Test
p=qvsTV(p,q) > ¢
: d L~ (Vd
Sample complexity = © (6—2) Sample complexity = © (8_2)
(without constraints) (without constraints) [Paninskiog]

1
TV(p,q) = sup (p(S) — q(S)) = St1(p. Q) 54
Sc(k]



Example 2: High dimensional distributions

P ={N(ulz):p € R

Goal: output i such that

Sample complexity = ® (i)

82
(without constraints)

Goal: Test

p=0vs|ul,>e¢

Sample complexity = ® (ﬁ)

82
(without constraints)

*detecting signal vs noise

Other families: product Bernoulli



Research goals

Establish sample complexity bounds for ...

e Different Ws

» Estimation/Testing/other properties

* Private-coin SMP/public-coin SMP/interactive
* Discrete/high-dimensional/non-parametric

Mix-n-match?

Already a bit too much ... each interesting in its own right ... |



For example ... discrete distribution testing

WQ, [AminJosephMao ’20, BerrettButucea’20, AcharyaCanonneLiuSunTyagi’ZO]:

Private-coin SMP « public-coin SMP = SMP/interactive
W, [AcharyaCanonnelLiuSunTyagi’20]:

Private-coin SMP « public-coin SMP = SMP/interactive
General W, [AcharyaCanonneLiuSunTyagi’20]:

Private-coin SMP <« public-coin SMP <« SMP/interactive

Similarly for Gaussian mean testing ... [AcharyaCanonneTyagi’20,
SzaboVuursteenVanZanten’20]
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Parameter/density Goodness-of-fitf
estimation Hypethesistesting

Part 3 of tutorial (link)

Learn about Ingster’s method from HT!


http://www.cs.columbia.edu/~ccanonne/tutorial-focs2020/

Establishing tight results for SMP protocols generally easier ...
Y;, ..., Y, independent (given U)

See general discussion in

[ACLST20] J. Acharya, C. Canonne, Y. Liu, Z. Sun, H. Tyagi, “Interactive inference under
information constraints” arXiv: 2007.10976 (in submission)

39



Methods to establish interactive lower bounds

1. Cramer-Rao/van Trees inequality [BarnesHanOzgur19,

BarnesChenOzgur20, SarbuZaidi21]
* Unified results for A;, B, , G4
* Results hold for £, loss

2. Strong Data Processing + Assouad’s method
[BravermanGardMaNguyenWoodruff16, DuchiRogers19]
. Lower bounds for B, , G4 under £, loss
. Naturally extends to other ¢, loss functions

3. Chi-squared contractions + Assouad’s method
[AcharysCanonneliuSunTyagi20, AcharyaCanonneSunTyagi20]

* Unified bounds for Az, B, G4
*  Works under £, forp = 1

e For arbitrary channels

40



Pointers

Part 2 of tutorial (link

Cramer-Rao/van Trees inequality

Strong Data Processing + Assouad’s method


http://www.cs.columbia.edu/~ccanonne/tutorial-focs2020/

Next two parts ...

MC1:

* Discrete distributions
e Simulate and infer for upper bounds
 Lower bounds

MC2:
e Unified approach for general distributions and channel families



MC 1: Discrete Distributions



Discrete distribution estimation
P = A,:distbson [d] == {1...d}
Goal: output p such that

E[TV(D,p)| < ¢

Sample complexity = © (i) (without constraints)

c2



Empirical distribution works - DIY

X1, ..., Xn ~ P, N, := #times x appears

Empirical distribution: p(x) = N,./n

Nx~Bin(n, p(x))

1— 1
B[ - p)*] = BELLZROD) g pyp < -

E[£1(P, p)]* < E[£,(P, p)°] (Jensen)
<d-E[¢5(P,p)] (Cauchy Schwarz)
d

S |



Under communication constraints

e W,

) ¥ @ e {0,1}




A simulation puzzle ...

Goal: To simulate a sample from messages

e W,

) (%) @ e {0,1}




One simulation to solve them all ...

Theorem. Suppose simulation is possible with f(d, ) samples.
Let T be some task with sample complexity T'(d, ).

Then T can be solved with f(d,¥) - T(d, ) samples under W,.

What is f(d,log, d)?

48



One simulation to solve them all ...

Theorem. There is a private-coin SMP protocol with

f(d,?) = max {Zd—{,, 1}.

No protocol (even interactive) can do better!

Estimation with ©® (i- zd—{,) and testing with © (\8/—3 zd_{))

c2



Algorithm for one-bit

Take 2d players and pair them into d groups:

* First pair tell if their input is symbol 1
* Second tell if their input is symbol 2
* Andsoon..



Algorithm for one-bit

0P 96 - 96
W& W - ke b

=17 = 27 — d?

5,1 = I{Xzi—1 — i}
Yy = {X5; = i}



Algorithm for one-bit

* Output i € [d] if:
 Player 2i — 1 is the only odd player sending 1
* Player 2i sends O

* If no such i, output L

Conditioned on not outputting L, output ~ p



Algorithm for one-bit

Player 2i — 1 is the only odd player sending 1

Pr(Yy_y = 1,Y,0_, = 0 for i’ % i) = p(i) 1_[(1 —p@"))

i’ #i

Player 2i sends O
Pr(Yz; =0) = (1 —p@))

Pr(outputi| not 1) = p(i) - 1_[ (1 — p(i’)) o p(i)
i'e[d]



Corollary

Inference Task Centralized “

Estimation 0 (i)

Testing 0 (\/‘7)



Corollary

o o ““

Estimation —
82 82 82
Testing: 0 \/_‘—i R d*/? 0 (i)
£2 &2 g2

Bounds are tight ... simulate and infer is optimal for private-coin SMP

55



Related work

Under SMP protocols these bounds are tight for communication constraints
[HanMukherjeeOzgur19, AcharyaCanonneTyagi’19] and LDP [DuchilordanWainwright14]

Sample complexity with interactivity and general channels?

[ACLST20] J. Acharya, C. Canonne, Y. Liu, Z. Sun, H. Tyagi, “Interactive inference under
information constraints” arXiv: 2007.10976 (in submission)

56



Reminder of my time: prove lower bounds

Recipe:

* Design hard instances that has some structure

* Show that problem is hard within these

* Assouad’s method and reduction to testing

* Bound “information contraction” due to constraints



A hard instance



A hard instance

[Paninski’08] Let Z = {—1,1}4/2, and P, = {p,: z € Z}, where

1+ z; - 2¢ , 1—2z-2¢
dl ) pZ(2l)= dl )

p,(2i—1) = i=1,..,d/2.

dry(p;,p,) = 5 Ham(z,2")
1/d +




Learni
rning lower bounds
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Learning lower bounds

Exercise: Let z € Z and P satisfies dpy (P, p,) < 18—0.
Then,
z" = arg min drv(D, p,’)

satisfies

) d
Ham(z,z*) < ™



From learning to testing



Assouad’s method

If we can estimate p, €., Pz, then we can estimate 2!

Theorem. Pick Z ~,,q4r <.
If

R 3
E |Ep, [dry(B™, U), ]| < —
then there exists an estimator Z (Y™, U) such that

A d
Z PI'(Zl' = Zl) > (0.8X —.

‘ 2
1<i<d/2

* Note: We could write this bound as },; I(Z; AY™|U) = Q(d)
63



Assouad’s method

Exercise. If

. d
Z PI'(Zi — Zl) > 0.8X —,

: 2
1<i<d/2
then there exists a subset S € {1, ...,d/2} with |S| > d/6s.t.ifi € S,

Pr(Z; = Z;) > 0.7.

Now we need a lower bound on n for this to happen



Information bound on one
coordinate



Notation

Fix i € [d/2], when can we figure Z;?

pY": distribution of Y™ when input distribution p,




Information bound on one coordinate

average output distribution fixing Z; = +1:

. . Yn L 1 Yn
When Z; = 1: Pii = samt Lzizi=+1Pz

. ] Yn L 1 Yn
When Zi = —1: —i "7 Sdj2-1 Zz:ziz—l |\

If we can guess Z; from Y™

= dTV(pK?, pf?) must be large

= bound distance between pf: and pf?



Total variation and hypothesis testing

P+, P> be any two distributions over Y
J € {1,2} be picked at random
GivenY ~ p;, designa j(Y) thatis a guess for j

For any j(Y):

1
Pr(j(Y) =j) < 5(1 + drv(p1, P2))

69



Information bound on one coordinate
In our case, p; = pf;, P, = pi?, and

Pr(Z; = Z;) > 0.7 = dy(p%;,p’;) = 0.4

Since this holds for at least d /6 coordinates,



Some ingredients

D( ||p )::Zp ( )lO pl(y) XZ(p p )ZZ(pl(y)_pZ(y))z
P1liP2 4 1Y gpz(y), 1, P2 s )

Pinsker’s inequality, convexity of logarithms:

2 - dry(p1, P2)* < D(p1lIp2) < x*(P1, P2)

Chain rule of KL divergence: If p; and p, are over Y; XY,:

D(p1 (Y1, Y2)||p2 (Y1, Y2))
= D(p:(Y)[|p2(Y1)) + Ey, [D(p1 (Y2|Y1)|[p2(Y2|Y1))]



KL < chi-squared (DIY)

Since log(1 + x) < x (why?)

_ p(x) — q(x)
D(p|lq) = Z p(x)log (1 + q0) )

< 2 p(x) () —a@) _ x%(p, Q)

q(x)

Exercise: Prove the chain rule of KL.



Why go to KL?

By Pinsker’s inequality,

4-dry(pY7p7)" < (D(L1IPYY) + D(P 7 1IDLD))
Summing over I,

> (D@IPY) + D@ IPE))
l

Tl YTL d d
224-dTV(p+l,p ) >4 =x016 = —
l

p+l are mixture distributions!

Handling mixtures is painful, leads to issues to extend SMP lower
bounds to interactive setting 7



Convexity to the rescue

Exercise: KL divergence is convex.
For any distributions p{, p, and q4,q, and A € [0,1],

D(Ap; + (1 —)qq||Ap2 + (1 —A)q3)
<A-D(p4llpz) + (1 —2A) - D(p4]|Ip2)

Prove using concavity of logarithms



Convexity to handle mixtures
z € {—1,1}¢/2, 79! obtained by flipping the ith coordinate of z

Theorem.

CCHUBERICHI ) ERCCAT)

Proof. Convexity of divergence to the definitions of p+l and p¥; v

Information about Z; bounded by average divergence in message
distribution upon changing only Z; when all others are fixed!

75



Convexity to handle mixtures

Summing over (

d
< E ZD(p ||pz@l

* For given Z the sum is divergences when changing one coordinate



Focus on one Zz

By expectation<max, and Iinearity of expectations,

d

%S max

ZD(p IIpZ@l)

** the following is the original bound in terms of MI:

1
ZI(Zi/\Y") < —-max
_ 2 "
l

72

zP1

D(p Ilpz@l)]

O O | v

——)
@ o

YTL



Bounding );; D(pgn | ‘Plz/@i)

By the chain rule of divergence
nooyny Y lyt= Yelyt—1
2 D(pg ”pz@i) = z [Epgt_l Z D t ZtEBi ) .
i t ]

t 1
. pZtI : Distribution of Y, with input p, conditioned on Yt~1

. Channel at player t a function only of Yt~1, denoted WY

72

@
Z t—1 —— ‘
O O W o

Y, conditioned on Y1
. zP3

78



Recall

For z € {—1,1}4/2
, 1+ z;2¢ , 1—2z2¢
pz(Zl — 1) — dl ) pz(ZL) — dl )

i=1,..,d/2

P, and p,e: differ only on 2i — 1 and 2i

1/d +




. Y. Yt—l Y, Yt—l
Bounding ZiD(pZtl sztelai )

P, and p,_o: differonly on 2i — 1 and 2i by 4¢z; /d
e FixYt 1!

t—1 t—1 4ez; - _
A ) =p )+ (Wi D w20

o o | v [ %

Y, conditioned on Y1
‘ zP3

80



Y|V Yt|Yt_1)

Bounding };; D ( sz@i

Since KL < x?, plugging the expression above

(p? () - p?@i(y))z

Y; YiYe
ED t|t1|| Ztelait 1)Szz -
i y pZGBi(y)

ge? (W(yl2i — 1) — W(yl20)’
= T'ZZ

xW(ylx)

Recall
1+ 7Z;¢ , 1—7;¢
d l ) pZ(Zl) — d l

p;(2i—1) =

\W(yl|2i —1) —W(y|2i)| large & seeing y tells about Z; .



An average information contraction bound

Theorem. [ACLST20] Under any interactive protocol,

Z (W2 — 1) — W (y|2)

[(Z; A'Y") <n-——- su
Z l N W (ylx)

wew

Theorem. If there exists an estimator then

d (WHI2i — 1) = Ww(y|2)°
75 <" —;‘;%ZZ WO
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Applications



Forany W € W, ((( )))
ZZ(W(yIZi—1)—W(y|2i))2 < o A
& 2 W(ylx) B

ForanyW e Wy, 0 <1 (
2 %
W(yl|2i — 1) — W (y|2i
ZZ( (yl2i — 1) = W(y|20)) 06D A
y

xW(ylx)

l



Interactive lower bound for estimation

()
A

G




Plug-n-play bounds

H(W)isa %x % PSD matrix:

(H (W))ij =

z (W2i—1) -WwH2D))(WHI2j — 1) - W(yl2)))

v Zj wlj)

W (lx)

i

) <\ 2
Zz WORi-D WD) _\ by
y



Plug-n-play bounds

I W< max | H(W) |l
Wew

Testing:

Classic

Private-coin

SMP

o

d3/2

= I W .

)

Public-coin

a(

SMP

d

Sequentially Interactive

2w

d

) |a
I (eZJu W llopl WL,

)

Estimation

Classic  Sequentially Interactive

a(

d
e?

)

o

d2

g2 I W .

)




Next 45 minutes:

Reinforcement Learning by Himanshu Tyagi ...
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Some references and previous work

Too many for a single slide, or two. Starts, more or less,
with Tsitsiklis’89, picks up again in the mid-2000’s with a
slightly different focus: local privacy, various types of
communication constraints, ML-related motivations...

For a detailed bibliography:

www.cs.columbia.edu/~ccanonne/tutorial-
focs2020/bibliography.html
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Now you all say ... Phew!



