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Interlude: why do we care about that?
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What's a concentration inequality?

First example: Markov's inequality.

If X >0, then Pr[ X 2 a] < [E[X]/a.
Proof. E[X] 2 E[XI[X>a]]>2E[al[X>a]]=aPr[X >al.

(Check: where did we use X >0 ?)
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Second example: Chebyshev's inequality.

Pr[ |X-E[X]|>a] < Var[X]/a%.
Proof. Apply Markov's inequality to X' := (X - [E[X])%.

(Note: half or more of the results in my area rely on Chebyshev)
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What's a concentration inequality?

Third example: Chernoff's inequality.

Pr[ X 2 a ] <inf., E[e%]/et.

Proof. Apply Markov's inequality to X' := etX,

(Note: this may not be the specific bounds you've seen, but that's usually
how they are proven, after picking the right t and massaging the result)
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Oh great, so everything's Markov?

No. But it's worth knowing those tricks. (Derive those things at least once, it
builds "intuition." Then don't.)

Read books about them, especially those discussing "why" we get those
bounds, when we can expect them, and what are the general ideas.

E.g., "subgaussian random variables have gaussian-like tail bounds."” "The
square of a subgaussian is subexponential."



Oh great, so everything's Markov?

Markov, Chebyshev, Chernoff, Hoeffding, Bennett, Bernstein, McDiarmid,
Azuma, McNugget: make sure you have seen those names (and others,
maybe), vaguely know what they are about, but honestly, no point in
learning the exact statements. You have Google and books.

(Also, again, most of the time you'll probably only need one or two of those.)
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Oh, look, More Wild Things

Vershynin Roman High-dimensional
probability. An introduction with

applications in data science. Cambridge
University Press, Cambridge, 2018.

https://www.math.uci.edu/~rvershyn/p
apers/HDP-book/ (free copy)
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https://www.math.uci.edu/~rvershyn/papers/HDP-book/

Wild Things on YouTube

"Concentration inequalities" by Aditya Gopalan
and Himanshu Tyagi

https://youtube.com/playlist?list=PLgMDNELGJ1

CZp3yTRIr5utkisB8i92 dZ

Prof. Aditya
Gopalan

Prof. Himanshu
Tyagi


https://youtube.com/playlist?list=PLgMDNELGJ1CZp3yTR9r5utkisB8i92_dZ

It You Want More Wild Things

Anything by David Pollard (also, sometimes, fun to read).

http://www.stat.vale.edu/~pollard/Books/Mini/Basic.pdf

Chapter 2

A few good inequalities

SECTION 2.1 introduces exponential tail bounds.

SECTION 2.2 introduces the method for bounding tail probabilities using mo-
ment generating functions.

SECTION 2.5 describes analogs of the usual LF norms, which have proved
useful in empirical process theory.

SECTION 2.4 discusses subgaussianity, a most useful extension of the gaus-
stanily property.

SECTION 2.5 discusses the Bennett inequality for sums of independent ran-
dom variables that are bounded above by a constant.
SECTION 2.6 shows how the Bennett inequality implies one form of the Bern-
stein inequality, then discusses extensions to unbounded summands.
SECTION 2.7 describes two ways to capture the idea of tails that decrease
like those of the exponential distribution.

SECTION 2.8 illustrates the ideas from the previous Section by deriving a
subgaussian/subexponential tail bound for quadratic forms in independent
subgaussian random variables.


http://www.stat.yale.edu/~pollard/Books/Mini/Basic.pdf

Some nuggets

A Markov is only for non-negative stuff!

A Chebyshev usually good enough for constant-probability statements
Things usually are around a few standard deviations

Only requires pairwise independence

A Hoeffding/Chernoff what you need most of the rest

Fancy stuff is fun, but "basic" often works

A Bernstein, Bennett: both subgaussian (near the mean) and subexponential (far tails) parts:

"Poisson-like" bounds

A Sanity checks: e.g., Gaussians first!



Some wilder nuggets*

* Beginning to get my metaphors mixed up here.
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Negative association

What if | have a sum of non-independent things?

A property of negatively associated random variables that is very useful in
applications to the analysis of algorithms is that one can apply the Chernoff-
Hoeffding(CH) bounds to give tail estimates on their sum; in effect, for purposes
of stochastic bounds on the sum, one can treat the variables as if they were inde-

pendent.

Dubhashi, DevdattRanjan, DeshBalls and bins: a study in negative
dependence. Random Structures Algorithms 13 (1998), no. 2, 99--124.

https://doi.org/10.7146/brics.v3i25.20006



https://doi.org/10.7146/brics.v3i25.20006

Decoupling

Say you are considering quadratic forms (or worse) in X4, ..., X,;:

S
S

a,in,,;Xj

S
|
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Terms: not independent, not negatively associated... Ouch.



Decoupling

Can we just replace this with
a,z-j lefj

Where the X;'s and Y;s are independent?



Decoupling

Basically, yes.

High-Dimensional
Probability

Theorem 6.1.1 (Decoupling). Let A be an n x n, diagonal-free matriz (i.e. the
diagonal entries of A equal zero). Let X = (X1,...,X,) be a random vector with
independent mean zero coordinates X;. Then, for every convex function F': R —
R, one has

EF(XTAX)<EF(A4XTAX') (6.3)
where X' is an independent copy of X.
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What is | wanted to argue things are not too tightly concentrated
around the expectation?

E.g., "things will be Q(1) standard dev away with proba Q(1)." True for
Gaussians



Anticoncentration!

What is | wanted to argue things are not too tightly concentrated around the
expectation?

One-trick-wild-poney: Paley—Zygmund. Simple, but involves higher moments.



Anticoncentration!

One-trick-wild-poney: Paley—Zygmund.
https://en.wikipedia.org/wiki/Paley%E2%80%93Zvemund inequality

Example: if X has mean O,

i 1 ] 0 X722
Pr_|X|> EVar[X] - X1

v
N



https://en.wikipedia.org/wiki/Paley%E2%80%93Zygmund_inequality

That's all (for me)




