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Abstract
We focus on some specific problems in distribution testing,

taking goodness-of-fit as a running example. In particular, we do
not aim to provide a comprehensive summary of all the topics in
the area; but will provide self-contained proofs and derivations of
the main results, trying to highlight the unifying techniques.
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Nomenclature
an ≲ bn There exists a constant C > 0 such that an ≤ C · bn for every

n. Similar to an = O(bn), but not necessarily asymptotic, and
easier to write.

an ≍ bn Both an ≲ bn and bn ≲ an. Similar to an = Θ(bn), but not
necessarily asymptotic, and easier to write.

an = O(bn) There exist a constant C > 0 and a value n0 such that
an ≤ C · bn for every n ≥ n0.

an = Ω(bn) There exist a constant C > 0 and a value n0 such that
an ≥ C · bn for every n ≥ n0. This is equivalent to bn = O(an).

an = Θ(bn) Both an = Ω(bn) and an = O(bn).

an ∼
n→∞

bn Asymptotic equivalence: limn→∞
an
bn

= 1 (stronger than an =
Θ(bn), as the “hidden constant” is 1).

an ≫ bn (Informal) an is much larger than, or “sufficiently” large com-
pared to, bn.

log, ln Throughout, log denotes the logarithm in base 2 and ln the
natural logarithm.

3



DRAFT

1 What is distribution testing?

This survey serves as an introduction and detailed overview of some top-
ics in (probability) distribution testing, an area of theoretical computer
science which falls under the general umbrella of property testing, and
sits at the intersection of computational learning, statistical learning
and hypothesis testing, information theory, and (depending on whom
one asks) the theory of machine learning. Broadly speaking, distribution
testing is concerned with the following type of questions:

Given a small number of independent data points from some
blackbox random source, can we efficiently decide whether the
distribution of the data follows some purported model (“property”),
or is statistically far from doing so?

Of course, there are many details to be made precise here. What
type of assumptions on the data do we make – is it discrete, continu-
ous, univariate, high-dimensional? What do we mean by “efficiently” –
the number of data points (data efficiency), the running time of our
algorithms (time efficiency), both? What do we mean by “far” – what
notion of distance are we considering? And what type of error do we
allow – false positives (Type I), false negative (Type II)?

Some of these are left flexible, as we will see below when formally
introducing the setting of distribution testing. However, the general
idea is to focus on finite sample guarantees (no qualitative limiting
statements as data size grows to infinity), for a fixed error probability
target δ controlling both Type I and Type II, and making as few
assumptions as possible under the (composite) alternative hypothesis.
That is, we will answer questions of the form “either the distribution of
the data satisfies the property, or it is pretty much anything far from
that.”

Adopting a Computer Science viewpoint, we will also assume that the
“size” of the object considered – typically, the domain size for discrete
data – is large, which allows us to focus on the first-order dependence
on this quantity. This also implies we typically consider a worst-case
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(minimax) setting with respect to this quantity, making statements
about the worst-case data size, or time, required to achieve our goal.
This does not means the algorithms and ideas obtained do not lead
to “practical” algorithms: rather, that people working in distribution
testing are quite pessimistic and paranoid in nature, and want the
guarantee that things are never too slow before the promise that they
often are quite fast. (Moreover, as we will see later, the worst-case
instances for most of our testing tasks are actually quite natural, and
likely to arise in practice! Paranoia, for once, may be warranted.)

A note. For simplicity, throughout this survey we will sweep under
the rug many measure-theoretic subtleties, and assume probability
distributions, probability density functions (pdf), and probability mass
functions (pmf) exist whenever required, and are suitably well-behaved.
We will also typically identify a probability distribution with its pdf
or pmf, and by a slight abuse of notation use p indifferently for the
distribution itself and its pdf. Most, if not all, of those subtleties can be
handled by inserting the words “Radon–Nikodym,” “measurable,” and
“counting measure” in suitable places and order.

1.1 Formulation, and relation to Hypothesis
Testing

In what follows, k ∈ N will be used to parametrize the domain of the
probability distributions: namely, ∆k will denote the set of probability
distributions over a (known) domain Xk.

We begin with the notion of distance we will be concerned about,
the total variation distance (also known as statistical distance):

Definition 1.1 (Total variation distance). The total variation distance
between two probability distributions p,q ∈ ∆k is given by

dTV(p,q) = sup
S⊆Xk

(p(S)− q(S)) .

Given a subset C ⊆ ∆k of distributions, we further define the distance
from p ∈ ∆k to C as dTV(p, C) := infq∈C dTV(p,q), and will say that
p is ε-far from C if dTV(p, C) > ε.
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One can check that dTV defines a metric on ∆k, and takes values in
[0, 1].E: Check it! Moreover, the total variation distance exhibits several important
properties, some of which will be detailed at length in Appendix B; we
recall a crucial one below.

Fact 1.1 (Data Processing Inequality). Suppose X and Y are independent
random variables with distributions p and q, and let f be any (possi-
bly randomized) function independent of X,Y . Then the probability
distributions pf and qf of f(X) and f(Y ) satisfy

dTV(pf ,qf ) ≤ dTV(p,q) .

That is, postprocessing cannot increase the total variation distance.

Assuming that p,q are absolutely continuous with respect to some
dominating measure µ,

dTV(p,q) = 1
2

∫ ∣∣∣∣dp
dµ −

dq
dµ

∣∣∣∣ dµ (1.1)

In the discrete case where p,q are both over N or a finite domain, this
leads to

dTV(p,q) = 1
2∥p− q∥1 (1.2)

that is, “total variation is half the ℓ1 distance between pmfs.” This turns
out to be a very useful connection, since ℓp norms are quite well-studied
beasts: we get to use our arsenal of geometric inequalities — Hölder,
Cauchy–Schwarz, and monotonicity of ℓp norms, to name a few.

One last piece of terminology: a property of distributions is a pred-
icate we are interested in (e.g., “is the probability distribution uni-
modal?”). By identifying the predicate with the set of objects which
satisfy it, we can equivalently view a property of distributions as a subset
of probability distributions (typically, with some interesting structure).
Which is what we will do: throughout, a property is just an arbitrary
subset of distributions we are interested in (see Fig. 1.1 for an illustra-
tion). With this in hand, we are ready to provide a formal definition of
what a “testing algorithm” is.

Definition 1.2 (Testing algorithm). Let P = ⋃∞
k=1 Pk and C = ⋃∞

k=1 Ck
be two properties of probability distributions, where Pk, Ck ⊆ ∆k for
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all k; and n : N × (0, 1] × (0, 1] → N, t : N × (0, 1] × (0, 1] → N be two
functions. A testing algorithm for P under C with sample complexity n
and time complexity t is a (possibly randomized) algorithm A which, on
input k ∈ N, ε ∈ (0, 1], δ ∈ (0, 1], and a multiset S of n(k, ε, δ) elements
of Xk, runs in time at most t(k, ε, δ) and outputs b ∈ {0, 1} such that
the following holds.

• If S is i.i.d. from some p ∈ Pk, then PrS,A[ b = 1 ] ≥ 1− δ;

• If S is i.i.d. from some p ∈ Ck such that dTV(p,Pk) > ε, then
PrS,A[ b = 0 ] ≥ 1− δ,

where in both cases the probability is over the draw of the i.i.d. sample
S from the (unknown) p, and the internal randomness of A.

The sample complexity of testing P under C is then the minimum sample
complexity n(k, ε, δ) achievable by a testing algorithm.

∆k

Ck

ε
Pk

Figure 1.1: An example of property to test. Here, Pk ⊆ Ck ⊆ ∆k, where the
property Pk is depicted as the inner orange area (“yolk”), and the “egg white” is the
area of rejection, i.e., the subset of Ck at total variation distance at least ε from Pk.1

A few remarks are in order. First, in most of our applications we
will take Ck = ∆k, so that the unknown distribution p is a priori
arbitrary, and the goal is to check whether it belongs to the subset

7



DRAFT

(property) of interest Pk. However, this need not always be the case,
and we may want to choose Ck differently to perform hypothesis testing
under structural assumptions: for instance, to test whether an unknown
unimodal distribution is actually Binomial (in this case, Pk ⊊ Ck ⊊ ∆k),
or if say a log-concave distribution is monotone (in which case there is
no inclusion relation between Pk and Ck, and both are strict subsets of
∆k).

Another important point is that, while our main focus will be on
discrete distributions, Definition 1.2 allows for continuous distribu-
tions as well. Finally, the above definition is quite flexible, and can
be seen to allow for testing multiple distributions: for instance, taking
Xk = [k]× [k], Ck := { p ∈ ∆k : p = p1 ⊗ p2 } (product distributions),
and Pk := { p1 ⊗ p2 ∈ Ck : p1 = p2 }, we obtain the question of two-
sample testing (a.k.a. closeness testing), which asks to test whether two
unknown distributions over [k] are equal, or far from each other.

Dependence on the error probability δ. Our definition of testing
algorithm leaves the error probability δ as a free parameter; however, it
is quite common in the distribution testing literature to set it as some
arbitrary constant smaller than 1/2 (usually 1/3). Indeed, by a standard
argument, an error probability 1/3 can be driven down to arbitrary δ
at the price of a O(log(1/δ)) factor in the sample complexity.

Lemma 1.1 (Error probability amplification). Fix P and C, and suppose
there exists a testing algorithm A for P under C with sample complexity
n(k, ε, 1/3) and time complexity t(k, ε, 1/3). Then there is a testing algo-
rithm A′ for P under C with sample and time complexities n′(k, ε, δ) :=
n(k, ε, 1/3)⌈18 ln(1/δ)⌉ and t′(k, ε, δ) := O(t(k, ε, 1/3) log(1/δ)).

Proof sketch. Fix P , C, A as in the statement. Given k, ε, and δ ∈ (0, 1],
let A′ be the algorithm which takes as input a multiset of n′(k, ε, δ)
elements, partitions it (arbitrarily) in m := ⌈18 ln(1/δ)⌉ disjoint multi-
sets S1, . . . , Sm, runs A independently on those m multisets with error
probability 1/3 to get b1, . . . ,bm, and finally outputs the majority

1TikZ code for Fig. 1.1 adapted from https://tex.stackexchange.com/a/598086/
31516.
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answer b := 1{
∑m
i=1 bi ≥ m/2}. The running time is dominated by

the m executions, giving the claimed O(m · t(k, ε, 1/3)) bound. Thus, it
suffices to check that the output is correct with probability at least 1−δ;
this in turn follows from a Hoeffding bound (Theorem A.3). Indeed,
by assumption, each bi is independently correct with some probability
p ≥ 2/3. Letting Xi ∼ Bern(p) be the indicator of the event “bi is the
correct output,” we have

Pr[ b incorrect ] = Pr
[

1
m

m∑
i=1

Xi <
1
2

]
≤ e−2(p−1/2)2m ≤ e−m/18 ≤ δ ,

where we used our setting of m in the last inequality.

Importantly, this logarithmic dependence is not always the right
one: as we will see in Chapter 2, there exist natural problems for which
the right dependence on the error probability only scales as

√
log(1/δ).

The learning baseline. Before setting out to design specific algo-
rithms for various testing tasks and analyze their performance, it is
good to have some sort of baseline to compare the result to. The most
natural one is the testing-by-learning approach, which can essentially be
summarized as follows: the sample complexity of testing P = ⋃∞

k=1 Pk
under C = ⋃∞

k=1 Ck is at most the sample complexity of, given k, learning
an arbitrary distribution from Pk ∪ Ck. More specifically, we have the
following:

Lemma 1.2 (Testing by Learning). Fix any P = ⋃∞
k=1 Pk and C =⋃∞

k=1 Ck, and let nL(k, ε, δ) denote the sample complexity of learning an
arbitrary probability distribution from Pk ∪ Ck ⊆ ∆k to total variation
ε with error probability at most δ. Then, the sample complexity n of
testing P under C satisfies

n(k, ε, δ) ≤ nL(k, ε2 , δ) .

This is not necessarily achieved by a computationally efficient tester.

Proof. Fix a learning algorithm A for Pk ∪ Ck with sample complexity
n := nL(k, ε2 , δ). By running it on n i.i.d. samples from p (which we are
promised either belongs to Pk or Ck), we obtain a distribution p̂ such
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that dTV(p̂,p) ≤ ε/2 with probability at least 1− δ. Assuming this is
the case, then (i) if p ∈ Pk, then of course dTV(p̂,P) ≤ ε/2; while (ii) if
dTV(p,P) > ε, by the triangle inequality (since total variation distance
is a metric) we must have dTV(p̂,P) > ε/2.

But we have an explicit description of p̂ in our hands, so we can
check which of the two cases holds – this may not be computationally
efficient, but does not require any additional sample from p. Thus, we
have a bona fide testing algorithm for P under C.

Importantly, this baseline is with respect to the sample complexity
of learning distributions from Pk ∪ Ck, not just Pk: the latter is in
general much larger! For instance, if Pk is a singleton but Ck = ∆k (e.g.,
as in identity testing, which we shall see in Chapter 2) then learning
Pk has sample complexity 0, but learning Pk ∪ Ck = ∆k has sample
complexity Ω(k). This leads us to our baseline: since Pk ∪ Ck ⊆ ∆k, the
sample complexity of any distribution testing problem is at most the
sample complexity of learning an arbitrary distribution over a known
domain of the same size, which we record below:

Theorem 1.3 (Learning baseline). The sample complexity of learning
an arbitrary probability distribution from ∆k to total variation ε with
error probability at most δ is

nL(k, ε, δ) = Θ
(
k + log(1/δ)

ε2

)
,

giving an upper bound on the sample complexity of any testing problem.

The proof can be found in various places; e.g., Kamath et al. (2015)
and Canonne (2020a). This testing-by-learning baseline, which is linear
in the domain size k, motivates the name commonly given to testing al-
gorithms which achieve significantly better sample complexity: sublinear
algorithms.

Worst-case distance parameter ε. As defined, a testing algorithm
must reject all distributions which are at distance greater than ε from the
property, where ε is provided as an input parameter. In particular, the
requirement is oblivious to the true distance ε(p) := dTV(p,Pk) > ε of
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the unknown distribution p to the property, and the sample complexity
is just expressed as a function of the “worst-case” ε. Instead of this,
one may want an adaptive algorithm which only takes the number of
samples “needed” to reject, as a function of ε(p): after all, in cases
where ε(p)≫ ε, one may reject after taking much fewer samples.

As it turns out, our focus on “worst-case ε” readily implies this
adaptive setting, via the use of a doubling search. The idea is quite
simple: given a testing algorithm A, we create an adaptive testing
algorithm A′ by repeatedly trying to guess the true distance ε(p),
starting at ε0 = 1 and halving our current guess εj at every stage until
we reach εL = ε, and calling A for every guess, with parameters k, εj ,
and a suitable probability of failure δj at stage j. If any of these (at
most L := ⌈log(1/ε)⌉) calls leads to a rejection, A′ outputs 0; otherwise,
it outputs 1. The key is to choose δj suitably so that (1) by a union
bound all invocations of A are correct with probability at least 1− δ,
but (2) the union bound does not cost too much in terms of sample
complexity. A standard way to do so is to set δj := δ

2(j+1)2 (though
many other choices of convergent series would do), so that ∑∞

j=0 δj ≤ δ.
The resulting sample complexity will then be, in the case ε(p) > ε,

⌈log(1/ε(p))⌉∑
j=0

n(k, εj , δj) =
⌈log(1/ε(p))⌉∑

j=0
n

(
k, 2−j ,

δ

2(j + 1)2

)
,

where n(·, ·, ·) denotes the sample complexity of A. Under very mild
conditions on n, this will be of the order n

(
k, ε(p), δ

log(1/ε(p))

)
, and

recalling that the dependence on the error probability is at worst
logarithmic, this means that adapting to the true value of ε(p) incurs
a cost at most doubly logarithmic in ε(p). Of course, when p ∈ Pk,
our adaptive algorithm A′ should run for all of the L := ⌈log(1/ε)⌉
iterations (until εL) in order to output 1, in which case the sample
complexity will be bounded as

⌈log(1/ε)⌉∑
j=0

n

(
k, 2−j ,

δ

2(j + 1)2

)
.

We will see a concrete example of this technique in Exercise 2.11.
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1.2 Why total variation distance?

The standard formulation of distribution testing, as stated in Defini-
tion 1.2, is tied to a specific metric between probability distributions:
the total variation distance (Definition 1.1). It is natural to wonder if
that choice is arbitrary, and, if not, what motivates it.

• Total variation distance provides a very strong guarantee, and for
instance is the most stringent of all ℓp norms. This has practical
consequences: if a source of data passes the test, then it will be
nearly “as good as if it had the desired property” as far as any
algorithm is concerned.

• It is well-behaved: total variation distance defines a proper metric,
and thus satisfies for instance the triangle inequality (which cannot
be said about, for instance, Kullback–Leibler divergence). It is
also nicely bounded, and will not take infinite values due to
pathological reasons.

• It satisfies the data processing inequality (Fact 1.1), which means
it is robust to preprocessing. If data comes from two sources close
in total variation distance, then post-processing this data cannot
make their distribution statistically further apart. This is not the
case for, among others, the ℓ2 metric.

• Its relation to hypothesis testing: total variation distance has
a natural and precise interpretation in terms of distinguishabil-
ity. This is formalized in Lemma 1.4, and makes total variation
distance the “right” notion of distance in applications such as
cryptography, and when arguing about indistinguishability of data
sources.

• Its connection to other distance measures. Total variation distance
enjoys various inequalities relating it to other distance measures
such as Kullback–Leibler divergence, ℓp metrics, Hellinger distance,
Kolmogorov distance, and Wasserstein (Earthmover) metric. Some
of those are elaborated upon in Appendix B.
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Of course, total variation distance also has its drawbacks: it is
sometimes too stringent, especially when considering distributions over
continuous domains: in that case, absent further assumptions on the
unknown continuous density, the testing problem becomes trivially
impossible (Le Cam, 1973). It also does not “tensorize” well (as opposed
to, say, Hellinger distance or Kullback–Leibler divergence), meaning
that the total variation distance between product measures does not
have a nice form with respect to the total variation distances between
individual marginals. And indeed, there are pros and cons to each choice;
although in this case the above should convince you that the pros vastly
outnumber the cons.

Relation to hypothesis testing. As aforementioned, there is a
natural connection between total variation distance and hypothesis
testing, which we recall below.

Lemma 1.4 (Pearson–Neyman). Any (possibly randomized) statistical
test which distinguishes between p0 and p1 from a single sample must
have Type I (false positive) and Type-II (false negative) errors satisfying

Type I + Type II ≥ 1− dTV(p0,p1)

Moreover, this is achieved by the test which outputs 1 if, and only if,
the sample belongs to the set S∗ := { x : p1(x) > p0(x) }.

Proof. Fix any test A distinguishing between two distributions p0 and
p1, given a single observation. Letting α and β denote the Type I and
Type-II errors of A, we have

α+ β = Pr
p0,R

[A(X,R) = 1 ] + Pr
p1,R

[A(X,R) = 0 ]

= ER[Pr
p0

[A(X,R) = 1 ]] + ER[Pr
p1

[A(X,R) = 0 ]]

= ER[Pr
p0

[A(X,R) = 1 ] + Pr
p1

[A(X,R) = 0 ]]

where we denote by R the internal randomness of A. Since, for any
fixed realization r of this randomness R, the resulting test A(·, r) is
deterministic, we can define for any r the acceptance region SA,r :=
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{ x : A(x, r) = 1 }, and write

α+ β = ER[Pr
p0

[X ∈ SA,R ] + Pr
p1

[X /∈ SA,R ]]

= 1 + ER[p0(SA,R)− p1(SA,R)]
≥ 1 + inf

S
(p0(S)− p1(S))

= 1− sup
S

(p1(S)− p0(S))

= 1− dTV(p0,p1) ,

as claimed. Finally, it is immediate from the definition of total variation
distance that the proposed test satisfies Type I+Type II = 1+p0(S∗)−
p1(S∗) = 1− dTV(p0,p1).

1.3 The road not taken: tolerant testing

In Definition 1.2 and throughout this survey, we focus on the standard
formulation version of testing, where the unknown distribution p either
belongs to the property Pk or is far from it. A natural generalization
of this, allowing for some “tolerance” to noise or misspecification in
the former case, would be to ask to distinguish p close to Pk from p
far from it. This is called tolerant testing Parnas et al., 2006, and is
formalized by introducing two parameters 0 ≤ ε′ < ε ≤ 1, and relaxing
the first item of Definition 1.2 to

If S is i.i.d. from some p ∈ ∆k such that dTV(p,Pk) ≤ ε′,
then PrS,A[ b = 1 ] ≥ 1− δ;

(Note then that our regular, “non-tolerant” testing corresponds to
taking ε′ = 0.) The tolerant testing task, sometimes called in Statistics
testing with an imprecise null, typically requires a much higher sample
complexity than the non-tolerant one (Valiant and Valiant, 2011), and
both algorithms and lower bounds are obtained via significantly different
techniques. For this reason, we will not here discuss tolerant testing
in much, or indeed any detail: the interested reader is referred to,
e.g., Wu and Yang (2020) for a primer on some of those techniques,
and to Canonne et al. (2022) and references within for an overview of
results on tolerant goodness-of-fit testing.
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1.4 Historical notes

Hypothesis testing has a long and rich history in Statistics, starting
with the work of Pearson (1900) introducing the χ2 test, and leading
to substantial advances over the next century. While it is difficult and
slightly dangerous to reduce twelve decades of intense research and
study in a few sentences,2 standard approaches in Statistics share a
few common features. First, they are asymptotic in nature (as opposite
to focusing on finite-sample guarantees), establishing and studying the
limiting distribution of a given test as the sample size goes to infinity.
This enables one to compute confidence intervals, and obtain a swath of
information from the limiting distribution; but by itself provides little
insight regarding the intermediate, finite-sample regime. Second, they
tend to focus on the so-called Type I error (significance of the test),
i.e., the probability to mistakenly reject the null hypothesis H0, and
only after fixing this significance level set out to minimize the Type II
error (that is, maximize the power of the test), which is the probability
to mistakenly accept the alternative hypothesis H1. This is, again,
an oversimplification; the reader should refer to, e.g., Balakrishnan
and Wasserman (2018) for a complementary and more detailed view.
Nonetheless, these features are two of the most salient points of contrast
with the very recent and related take on hypothesis testing from the
theoretical computer science community, distribution testing, which
perhaps shares most similarity with the work of Ingster (Ingster, 1986;
Ingster, 1997).

Distribution testing was first introduced in an influential paper
by Goldreich et al. (1998), which formally defined the broader field of
property testing; Goldreich and Ron (2000) then specifically considered
the question of testing uniformity of an unknown probability distribution
(in an ℓ2 sense), using the collision-based tester to test whether a random
walk had (approximately) reached its stationary distribution.

This was, however, only implicitly using uniformity testing as a sub-
routine in the context of testing some property (expansion) of bounded-
degree graphs. The work of Batu et al. (2000) first considers distribution

2Which is exactly what the following paragraph will set out to do regardless.
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testing for its own sake, studying the question of closeness testing (i.e.,
two-sample testing), where one seeks to decide from samples if two
unknown distributions are equal. This initiated a long line of work
on testing many properties – including uniformity, identity, closeness,
monotonicity, independence (being a product distribution), to name
only a few.

While the early papers focused on the dependence on the domain
size k, treating the distance parameter ε as a small constant or a second-
order concern, later works, beginning with Chan et al. (2014), started
looking for the tight dependence on ε as well. Even more recently, the
“right” dependence on δ, the error probability, has come into focus as
well (Diakonikolas et al., 2018; Diakonikolas et al., 2021). This, in some
sense, brings the theoretical computer science closer to the information
theory literature, where the focus on the error exponent (that is, the
rate at which the error probability decays exponentially, as a function
of the other parameters) is the standard view.

Another recent trend in distribution testing has been to consider dif-
ferent “accesses” to the data, rather than i.i.d. samples: for instance, ac-
cess to so-called conditional samples (Canonne et al., 2015; Chakraborty
et al., 2013), or the ability to ask for, or observe, the probability of indi-
vidual elements of the domain (Rubinfeld and Servedio, 2009; Canonne
and Rubinfeld, 2014; Onak and Sun, 2018). These types of access allow
for much more efficient testing algorithms, but require significantly
different algorithmic tools and proof techniques, and we will not discuss
them here. For more on this, we defer the interested reader to another
survey, Canonne (2020b).

Finally, over the past few years distribution testing has ventured into
adjacent areas of computer science and information theory, by incorpo-
rating various constraints and resources into its formulation. Examples
include data privacy (and, more specifically, differential privacy (Dwork
et al., 2006) and its variants) – see, e.g., (Kamath and Ullman, 2020),
memory constraints, and bandwidth constraints (Tsitsiklis, 1993); of
which we will cover a fraction in Chapter 4. This has been done by
borrowing, extending, and (re)discovering ideas and techniques from
these areas and Statistics; somewhat satisfyingly, leading distribution
testing back to some of its roots.
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This survey aims to describe some of these connections, and provide
an overview of these ideas and techniques which took years for the
author to learn about.

2 Testing goodness-of-fit of univariate distri-
butions

In this chapter, we take an in-depth look at one of the most natural
and “basic” properties to test, uniformity:

Is the unknown distribution the uniform distribution uk over
the domain [k], or does it significantly deviate from being uniform?

Formally, recalling Definition 1.2, we define uniformity testing by
letting Pk := {uk} (a singleton), and Ck = ∆k. Of course, while the
uniform distribution is a rather fundamental one, one might instead have
a different reference distribution in mind, e.g., a particular Binomial
distribution, or a Zipf one, or an arbitrary probability distribution
provided as a vector of k probabilities. This generalization is known (in
the computer science community) as identity testing, and also goes by
the name of one-sample goodness-of-fit. While identity testing might
seem to be a strictly more general problem than uniformity testing,
the two are closely related. Clearly, identity testing is at least as hard
as uniformity testing; but it turns out that a converse holds, and that
uniformity is also the “hardest” case of identity testing, in a very strong
sense. Namely, as we will see in Section 2.2, any testing algorithm for
uniformity implies one for identity testing, with essentially the same
sample complexity!1

Before delving into the details of this chapter, two more comments.
First, “uniformity testing” refers to testing whether the unknown distri-
bution p is uniform on the whole, known domain: the different question
of testing whether p is uniform on its (unknown) support, i.e., testing

1There is a small print, of course, and some constant factors are lost.
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Pk := { uS : S ⊆ [k] } is known as generalized uniformity testing (Batu
and Canonne, 2017), and has a strictly higher sample complexity.

Second, the formulation of identity testing crucially assumes that
the reference distribution is fully known to the algorithm. One can
also consider the task of testing, given samples from two distributions
p,q (both unknown), whether p = q or dTV(p,q) > ε. This question,
closeness testing (or two-sample goodness-of-fit), which we briefly alluded
to in Chapter 1), can be seen to be at least as hard as identity testing: any
algorithm for closeness testing can be used to perform identity testing by
generating i.i.d. samples from the known reference distribution q.2 But
closeness testing, again, is strictly harder than identity testing: while,
as we will see, the latter has sample complexity Θ

(√
k/ε2), the former

requires Θ
(
k2/3/ε4/3 +

√
k/ε2) samples (Chan et al., 2014), which is

much larger as long as ε≫ 1/k1/4.

In the rest of the chapter, we will go through an in-depth overview
of uniformity and identity testing, with a full derivation of many results.
This is the most detailed section of this monograph. We will start in Sec-
tion 2.1 by describing and analyzing seven different uniformity testing
algorithms, before turning in Section 2.2 to identity testing. There,
we will describe the aforementioned reduction between uniformity and
identity testing, which lets us use any of the algorithms from Section 2.1
to solve the more general problem; as well as a testing algorithm to
perform identity testing directly, without reducing it to uniformity. The
goal of this chapter is not to provide a list of various testing algorithms
to the reader, then left to ponder what to do with it; but rather to
highlight some general techniques and ideas in the course of their anal-
ysis, applicable beyond these specific examples. We further emphasize
that uniformity (and identity) testing are only two specific examples of
properties considered in distribution testing, although two fundamental
ones; for a coverage of other properties considered in the literature (e.g.,
monotonicity, uni- or bi-modality, independence of marginals. . . ), we
refer the reader to Canonne (2020b) or Goldreich (2017, Chapter 11).

2This adds a computational overhead, but as far as sample complexity is concerned
this is not a problem.

18



DRAFT

2.1 Uniformity testing

The sample complexity of uniformity testing with distance parameter
ε ∈ (0, 1] is known to be Θ(

√
k/ε2) (Paninski, 2008); this is, for a large

range of parameters, significantly smaller than the domain size k, and
in particular much better than the learning baseline of Theorem 1.3.
This also means that we can reliably infer interesting properties of the
distribution after observing only a negligible fraction of the domain
elements! That is quite surprising, and nice. Now, how do we perform
uniformity testing? And what should we keep in mind while doing so?

Although the sample complexity is of course a key aspect, there are
several things to consider in a testing algorithm. To name a few:

Data efficiency: Does the algorithm achieve the optimal sample com-
plexity Θ(

√
k/ε2)?

Time efficiency: How fast is the algorithm to run (as a function of
k, ε, and the number of samples n)?

Memory efficiency: How much memory does the algorithm require
(as a function of k, ε, and n)?

Simplicity: Is the algorithm simple to describe and implement?

“Simplicity”: Is the algorithm simple to analyze? This is not just a
one-time thing: adapting and building upon a given algorithm will
be much easier if the analysis does not require a long succession
of technical, very specific, and complex steps.

Robustness: How tolerant is the algorithm to breaches of the promise?
That is, does it accept distributions which are not exactly uniform
as well, or is it very brittle?

Elegance: This is somewhat subjective, and each of us might have a
different view of what it means. If you have strong feelings about
this, however, know that you are not alone.

Generalizable: Does the algorithm have other features that might be
desirable in other settings? For instance, if the algorithm has low
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sensitivity (in the Lipschitz sense), then it will be more resilient
to adversarial perturbations of some of the samples – this is great
for, e.g., differential privacy applications.

In this chapter, we will have a detailed look at seven different
uniformity testing algorithms, each with its pros and cons. For each
of them, we will provide a full proof of their performance, which will
help us illustrate several techniques and ideas underlying the analysis of
distribution testing algorithms. Table 2.1 summarizes the names, and
some of the specificities, of those seven algorithms: we will discuss them
in more detail in Section 2.1.9.

Sample
complexity Notes References

Collision-based k1/2

ε2
“Natural”

Goldreich and
Ron, 2000;

Diakonikolas
et al., 2019b

Unique
elements

k1/2

ε2

Low sensitivity
ε ≫ 1/k1/4 Paninski, 2008

Modified χ2 k1/2

ε2
(None)

Valiant and
Valiant, 2017;
Acharya et al.,

2015;
Diakonikolas
et al., 2015

Empirical
distance to

uniform
k1/2

ε2
Low sensitivity Diakonikolas

et al., 2018

Random binary
hashing

k

ε2
Suboptimal, but

fast
Acharya et al.,

2020d
Bipartite
collisions

k1/2

ε2
Tradeoff possible Diakonikolas

et al., 2019a
Empirical

subset
weighting

k1/2

ε2

Tradeoff possible
ε ≫ 1/k1/4

Acharya et al.,
2022

Table 2.1: The current landscape of uniformity testing, based on the algorithms
covered in this survey. For ease of reading, we omit the O(·), Θ(·), and Ω(·)’s from
the table: all results should be read as asymptotic with regard to the parameters, up
to absolute constants.
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2.1.1 The ℓ2 distance, and why

A key insight, which underlies a lot of the algorithms we will cover, is
that here ℓ2 distance is a good proxy for total variation distance:

dTV(p,uk) = 1
2∥p− uk∥1 ≤

√
k

2 ∥p− uk∥2 (2.1)

the inequality being Cauchy–Schwarz. So if dTV(p,uk) > ε, then
∥p− uk∥22 > 4ε2/k (and, well, if dTV(p,uk) = 0 then ∥p− uk∥22 = 0
too, of course). Moreover, we have the very convenient fact, specific to
the distance to uniform: for any distribution p over [k],

∥p− uk∥22 =
k∑
i=1

(p(i)− 1/k)2 =
k∑
i=1

p(i)2 − 1/k = ∥p∥22 − 1/k , (2.2)

so combining the two we get that dTV(p,uk) > ε implies ∥p∥22 >

(1 + 4ε2)/k.

Remark 2.1. The quantity ∥p∥22 is commonly known as the collision
probability of p, due to the following easy fact: if X,Y are i.i.d. random
variables distributed according to p, then

Pr[X = Y ] =
∑
i∈X

Pr[X = i, Y = i ] =
∑
i∈X

p(i)2 = ∥p∥22 (2.3)

(this generalizes to higher-order collisions, with ∥p∥jj). It is easy to see,
from Eq. (2.2), that among all probability distributions over a given
support size k the collision probability is minimized for the uniform
distribution: indeed, ∥p∥22 = 1

k + ∥p− uk∥22 ≥
1
k .

Remark 2.2. Eq. (2.1) provides an upper bound on the total variation
distance in terms of the ℓ2 distance. Recalling further that ℓp norms
are monotone (non-increasing) in p, E: Prove

it: Exer-
cise 2.1.

we further get that ∥x∥1 ≥ ∥x∥2
for any x ∈ Rd, and therefore

1
2∥p− q∥2 ≤ dTV(p,q) ≤

√
k

2 ∥p− q∥2 (2.4)

for any two p,q ∈ ∆k. Although loose by a factor
√
k (where k is the

domain size), this relation turns out to be surprisingly useful in many
occasions.
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2.1.2 Collision-based

In view of Eq. (2.2), a very natural idea is to estimate ∥p∥22, in order to
distinguish between (i) ∥p∥22 = 1/k (uniform) and (ii) ∥p∥22 > (1+4ε2)/k
(ε-far from uniform). How to do that? Upon recalling Remark 2.1, the
probability that two independent samples from p take the same value
(a “collision”) is exactly ∥p∥22. Thus, an obvious approach is to take n
samples X1, . . . , Xn, count the number of pairs that show a collision,
and use that as an unbiased estimator Z1 for ∥p∥22:

Z1 = 1(n
2
) ∑

1≤s<t≤n
1{Xs = Xt} . (2.5)

By the above, E[Z1] = ∥p∥22. If we threshold Z1 somewhere between
(i) and (ii), at say τ := (1 + 2ε2)/k, we should be able to distinguish
between our two cases and get a valid tester. But how large must n be
for this to work?

Require: Multiset of n samples x1, . . . , xn ∈ X , parameters ε ∈ (0, 1]
and k = |X |

1: Set τ ← 1+2ε2

k

2: Compute ▷ Can be done in O(n) time if X is known, O(n logn) if
only k is.

Z1 = 1(n
2
) ∑

1≤s<t≤n
1{xs = xt} = 1(n

2
) ∑
j∈X

(
N j

2

)

where N j ←
∑n
t=1 1{xt = j}.

3: if Z1 ≥ τ then return 0 ▷ Not uniform
4: else return 1 ▷ Uniform

Algorithm 1: Collision-Based Tester

Intuitively, we expect the test to work as long as the standard
deviation of Z1 (the “noise”) is smaller than the gap between the
expectations in our two cases (the “signal”); that is,

√
Var[Z1]≪ ∆E[Z1] = 4ε2

k
(2.6)
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as this is the condition for the random fluctuations of our statistic Z1
not to “cross” our threshold too often and lead to a wrong answer.

To make this quantitative, we can use Chebyshev’s inequality, which
requires us to bound Var[Z1]. This is where things get tricky, since Z1 is
the sum of

(n
2
)

random variables which are not pairwise independent.3

We first show how to derive a (suboptimal) bound n = O
(√

k/ε4
)
:

Var[Z1] = E
[
Z2

1

]
− E[Z1]2

= 1(n
2
)2 ∑

1≤s<t≤n

∑
1≤s′<t′≤n

E[1{Xs = Xt}1{Xs′ = Xt′}]− ∥p∥42

To handle this last sum despite the lack of independence of the sum-
mands, we will break it in 3 groups depending on the cardinality of
{s, t, s′, t′}, which can be either 4 (all indices are distinct), 3 (one index
is common to the two pairs), or 2 (both pairs of indices are the same).

• In the first case, we have independence of the two indicator random
variables, and

E[1{Xs = Xt}1{Xs′ = Xt′}] = E[1{Xs = Xt}]E[1{Xs′ = Xt′}] = ∥p∥42.

• In the third case, the two indicator random variables are the same,
and since 1{}2 = 1{} we get

E[1{Xs = Xt}1{Xs′ = Xt′}] = E[1{Xs = Xt}] = ∥p∥22.

• The second case is the messiest one; still, one can verify that in
this case 1{Xs = Xt}1{Xs′ = Xt′} is 1 if, and only if, the three
distinct samples corresponding to the 3 distinct indices among
s, t, s′, t′ take the same value, from which

E[1{Xs = Xt}1{Xs′ = Xt′}] = ∥p∥33.

It remains to count how many summands of each type we have. Clearly,
we have exactly

(n
2
)

summands of the third type; it is also not too hard
3Namely, the summands 1{Xs = Xt} in the definition of Z1 are positively cor-

related: Cov(1{Xs = Xt},1{Xs′ = Xt′ }) ≥ 0, and are only independent if s, s′, t, t′

are all distinct.
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to see that we have
(n

2
)(n−2

2
)

= 6
(n

4
)

summands of the first, and 6
(n

3
)

of the second. (As a sanity check, 6
(n

4
)

+ 6
(n

3
)

+
(n

2
)

=
(n

2
)2, so all our

summands are accounted for.)
Getting back to our variance computation, this yields

Var[Z1] = 1(n
2
)2
(

6
(
n

4

)
∥p∥42 + 6

(
n

3

)
∥p∥33 +

(
n

2

)
∥p∥22

)
− ∥p∥42

= 1(n
2
)2
6

(
n

4

)
−
(
n

2

)2
∥p∥42 + 6

(
n

3

)
∥p∥33 +

(
n

2

)
∥p∥22


(2.7)

≤ 4
n
∥p∥33 + 4

n2 ∥p∥
2
2

≤ 4
n
E[Z1]3/2 + 4

n2E[Z1]

first using that 6
(n

4
)
<
(n

2
)2 to discard a negative term, then that n ≥ 2

to get a simpler-looking upper bound on binomial coefficients, and
finally writing ∥p∥3 ≤ ∥p∥2 by monotonicity of ℓp norms.

In the uniform case (often called the completeness case for historical
reasons), we seek to control the probability that Z1 crosses our threshold
τ := 1+2ε2

k , that is

Pr[Z1 ≥ τ ] = Pr
[
Z1 ≥ (1 + 2ε2)E[Z1]

]
≤ Pr

[
Z1 ≥ (1 + ε2)E[Z1]

]
while in the “far” case (often called the soundness case), we want to
control

Pr[Z1 < τ ] ≤ Pr
[
Z1 <

(1− ε2)(1 + 4ε2)
k

]
≤ Pr

[
Z1 < (1− ε2)E[Z1]

]

using first that (1− ε2)(1 + 4ε2) ≥ 1 + 2ε2 (for ε ≤ 1/2), and then the
fact that in the “far” case E[Z1] > 1+4ε2

k .
To control our probability of error in both cases, it is thus sufficient

to upper bound Pr
[
|Z1 − E[Z1]| ≥ ε2E[Z1]

]
; by Chebyshev’s inequality
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(Theorem A.2), this is at most

Pr
[
|Z1 − E[Z1]| ≥ ε2E[Z1]

]
≤ Var[Z1]
ε4E[Z1]2

≤ 4
ε4nE[Z1]1/2 + 4

ε4n2E[Z1]

≤ 4
√
k

ε4n
+ 4k
ε4n2

which is at most 1/3, as desired, for n ≥ 13
√
k

ε4 . (For the third inequality,
we relied on the fact that E[Z1] = ∥p∥22 ≥ 1/k (cf. Remark 2.1).)

The above argument establishes that the collision-based tester has
sample complexity O(

√
k/ε4). This is not the best one can get; in fact,

by being (much) more careful one can show that this tester achieves
the optimal sample complexity (as a function of k and ε)!

Theorem 2.1. The collision-based tester (Algorithm 1) is a testing al-
gorithm for uniformity with sample complexity n(k, ε, 1/3) = O(

√
k/ε2)

and time complexity O(n).

Proof. Clearly, if we are to prove this tighter bound, we have to be less
heavy-handed in one of the steps of the previous analysis, specifically in
bounding the variance. An obvious candidate is the first step featuring
an inequality instead of an equality, just after Eq. (2.7): there, we
discarded a term since its coefficient 6

(n
4
)
−
(n

2
)2 was negative.

Maybe we should not have. Starting again at Eq. (2.7) and recalling
the relation

(n
2
)2 = 6

(n
4
)

+ 6
(n

3
)

+
(n

2
)

we saw earlier, we have(
n

2

)2

Var[Z1] =

6
(
n

4

)
−
(
n

2

)2
∥p∥42 + 6

(
n

3

)
∥p∥33 +

(
n

2

)
∥p∥22

=
(
n

2

)
∥p∥22(1− ∥p∥22) + 6

(
n

3

)
(∥p∥33 − ∥p∥

4
2) (2.8)

A detour: this quite interesting! The first term is exactly the variance
we would get had we had independent summands (this is exactly the
variance of a Binomial with parameters

(n
2
)

and ∥p∥22), while the second

25



DRAFT

is the “positive correlation” term. Indeed, one can see that the second
term is always nonegative, as

∥p∥42 =
(∑

i

p(i)3/2p(i)1/2
)2

≤
∑
i

p(i)3∑
i

p(i) = ∥p∥33

by Cauchy–Schwarz (with equality if, and only if, p is uniform on its
support). Going back to our variance analysis, we will simplify a little
the RHS above for the sake of conciseness, leading to

Var[Z1] ≤ 4
n2 ∥p∥

2
2 + 4

n
(∥p∥33 − ∥p∥

4
2) (2.9)

at the cost of some small constant factors (and assuming without loss
of generality that n ≥ 2).

• In the uniform case, we have ∥uk∥33 = ∥uk∥42 and Eq. (2.9) gives
Var[Z1] ≤ 4

n2k , and similarly as before

Pr[Z1 ≥ τ ] = Pr
[
Z1 ≥ (1 + 2ε2)E[Z1]

]
≤ Var[Z1]

4ε4E[Z1]2
≤ k

ε4n2

by Chebyshev’s inequality, and using E[Z1] = 1/k. This in turn is
less than 1/3 as long as n ≥

√
3k/ε2.

• In the “far” case, we will be a little more careful. Let α2 :=
k∥p− uk∥22 ≥ 4ε2, so that E[Z1] = 1+α2

k . The probability that
our tester errs in this case is

Pr[Z1 < τ ] = Pr
[
Z1 <

1 + 2ε2

1 + α2 E[Z1]
]

= Pr
[
Z1 <

(
1− α2 − 2ε2

1 + α2

)
E[Z1]

]

≤ Pr
[
Z1 <

(
1− α2

2(1 + α2)

)
E[Z1]

]

≤ 4(1 + α2)2

α4 · Var[Z1]
E[Z1]2

≤ 16(1 + α2)2

α4n2∥p∥22
+ 16(1 + α2)2

α4n
· ∥p∥

3
3 − ∥p∥

4
2

∥p∥42
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the first inequality using α2 ≥ 4ε2, the second being Chebyshev’s,
and the third being Eq. (2.9). The first term is relatively familiar:
since ∥p∥22 = (1 + α2)/k by definition of α, we have

16(1 + α2)2

α4n2∥p∥22
= 16(1 + α2)k

α4n2 ≤ 5k
ε4n2 (2.10)

the inequality since x > 0 7→ 1+x
x2 is decreasing and α2 ≥ 4ε2 (and

ε ≤ 1 to write 1 + 4ε2 ≤ 5).
To handle the second, we write p = (p− uk) + uk and expand:

∥p∥33 − ∥p∥
4
2 ≤ ∥p− uk + uk∥33 −

1
k2

= ∥p− u∥33 + 3
k
∥p− u∥22 (2.11)

≤ ∥p− u∥32 + 3
k
∥p− u∥22

= α3

k3/2 + 3α2

k2 (2.12)

where the first inequality uses ∥p∥22 ≥ 1/k, the equality follows
from expanding the cubes in ∑

i((p(i) − uk(i)) + uk(i))3 and
observing the cancellations, the second inequality is monotonicity
of ℓp norms, and the last equality stems from the definition of α.
This gives

16(1 + α2)2

α4n
· ∥p∥

3
3 − ∥p∥

4
2

∥p∥42
= 16k2

α4n
· (∥p∥33 − ∥p∥

4
2)

≤ 16
√
k

αn
+ 48
α2n

≤ 8
√
k

εn
+ 12
ε2n

. (2.13)

Combining Eqs. (2.10) and (2.13), we get

Pr[Z1 < τ ] ≤ 5k
ε4n2 + 8

√
k

εn
+ 12
ε2n
≤ 5k
ε4n2 + 20

√
k

ε2n

which is less than 1/3 for n ≥ 64
√
k/ε2, as can be seen by solving

the inequality 5x2 + 20x ≤ 1/3 (where x =
√
k

ε2n).
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Combining the uniform and far cases proves the theorem, showing that
n = O(

√
k/ε2) samples suffice for the collision-based tester to be correct

with probability at least 2/3 in both cases.

2.1.3 Unique elements

Another idea: count the number of elements that appear exactly once
among the n samples taken. Why is that a sensible thing to do? We
have seen that the uniform distribution will have the fewer collisions,
so, equivalently, will have the maximum number of unique elements. In
this case, the estimator Z2 (the number of unique elements) is defined
as

Z2 = 1
n

∑
j∈X

1{N j = 1} , (2.14)

again with N j := ∑n
t=1 1{Xt = j}. It is a simple matter to verify that

this statistic has expectationE: Check it:
Exercise 2.2.

E[Z2] =
∑
i∈X

p(i)(1− p(i))n−1 (2.15)

which is. . . a thing? Note that under the uniform distribution uk, this is
exactly (1−1/k)n−1 ≈ 1− n

k , and under arbitrary p this is (making a few
approximations not always valid) ≈∑k

i=1 p(i)(1− np(i)) = 1− n∥p∥22.
So the gap in expectation between the two cases “should” be around
4ε2n/k, and, if the variance analysis goes well and the stars align, we will
be able to use Chebyshev’s inequality and argue that we can distinguish
the two for n large enough.

Now, before we actually delve into this analysis, it is worth mention-
ing a limitation of this tester, which is that we only expect it to work
for n≪ k. Indeed, we count the number of distinct elements, and there
will never ever be more than k of them if the domain size is k.4 That
explains, intuitively, the condition for the test to work: we need n (the
number of samples taken) to be smaller than k (the maximum number
of distinct elements one can ever hope to see), which gives, since we
will eventually get n = Θ(

√
k/ε2), the condition ε≫ 1/k1/4.

4More quantitatively, for n → ∞ the approximations made in the above discussion
completely break down; and we will instead get E[Z2] → 0 in both the uniform and
the far cases.
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Require: Multiset of n samples x1, . . . , xn ∈ X , parameters ε ∈ (0, 1]
and k = |X | such that ε ≥ 15

k1/4

1: Set τ ← (1− 1
k )n−1 − nε2

8k ▷ This is Euk
[Z2]− nε2

8k
2: Compute ▷ Can be done in O(n) time if X is known, O(n logn) if

only k is.
Z2 = 1

n

∑
j∈X

1{N j = 1}

where N j ←
∑n
t=1 1{xt = j}.

3: if Z2 ≤ τ then return 0 ▷ Not uniform
4: else return 1 ▷ Uniform

Algorithm 2: Unique-Elements Tester

Our first step is to make our back-of-the-envelope computation
above rigorous, and lower bound the gap ∆(p) := Euk

[Z2] − Ep[Z2]
between the far and uniform cases.

Lemma 2.2. If n ≤ k, we have

Euk
[Z2]− Ep[Z2] ≥ n

16kdTV(p,uk)2 .

Proof. Denote this gap by ∆(p). From (2.15), we can explicitly write

∆(p) = (1− 1/k)n−1 −
∑
i∈X

p(i)(1− p(i))n−1

=
∑
i∈X

p(i)
(
(1− 1/k)n−1 − (1− p(i))n−1

)

= (1− 1/k)n−1 ∑
i∈X

p(i)
(

1−
(1− p(i)

1− 1/k

)n−1)

where in the second line we used ∑
i p(i) = 1 to “hide 1.” Defining

f : [0, 1]→ R by

f(x) = x

(
1−

( 1− x
1− 1/k

)n−1
)

and using the fact that n ≤ k to write (1− 1/k)n−1 ≥ (1− 1/k)k ≥ 1/4
(as k ≥ 2), we are left with ∆(p) ≥ 1

4
∑
i∈X f(p(i)). At this point, we
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would like to rely on tools from our arsenal (convexity or concavity for
Jensen’s inequality, monotonicity, etc.); unfortunately, the function f is
not very well-behaved, and is neither concave, convex, or monotone. It
does satisfy f(0) = f(1/k) = 0, f(1) = 1, but that is not quite enough.
Instead, we will find a “good” lower bound g on f , which will allow us
to reason more easily: specifically, we will set, for x ∈ [0, 1],

g(x) = n− 1
k − 1 · (x− 1/k) + n− 1

2(1− 1/k)(x− 1/k)21{x ≤ 1/k} .

Let us demystify this choice a little. The first coefficient is simply
f ′(1/k), while the second has been chosen as the largest possible value
such that g′(0) ≥ 0.5 Moreover, when summing ∑i g(p(i)), the linear
term will just cancel out and we will be left with a quadratic term of
the form ∑

i g(p(i)) ≍ ∑
i(p(i) − 1/k)21{p(i) ≤ 1/k}, which we can

hope to relate to ∥p− uk∥22 (the same thing, without the indicator). An
illustration of f and g is given in Fig. 2.1.

Figure 2.1: Our choice of g, here depicted for k = 8, n = 7.

To continue our analysis, we will rely on the following technical
claim, whose proof is calculus and left to the reader.E: You are

the reader.

5While we will not require it, this ensures g is nondecreasing, which is nice.
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Claim 2.1. Fix α ∈ (0, 1) and β ≥ 1 such that αβ
1−α ≤ 1; and define

fα,β, gα,β : [0, 1]→ R by fα,β(x) = x

(
1−

(
1−x
1−α

)β)
and

gα,β(x) = αβ

1− α(x− α) + β

2(1− α)(x− α)21{x ≤ α} .

Then gα,β is nondecreasing, and fα,β ≥ gα,β.

Applying this to α := 1/k and β := n−1 (which, since n ≤ k, satisfy
the assumptions) leads to

∆(p) ≥ 1
4
∑
i∈X

g(p(i))

= n− 1
8(1− 1/k)

∑
i∈X

(p(i)− 1/k)21{p(i) ≤ 1/k}

≥ n− 1
8(k − 1)

(∑
i∈X
|p(i)− 1/k|1{p(i) ≤ 1/k}

)2

= n− 1
8(k − 1)dTV(p,uk)2 ,

where the first line uses f ≥ g, the second from cancellation of the linear
term of g, the third is Cauchy–Schwarz, and the last follows from the
definition of total variation distance. Using n ≥ 2 to write n−1

k−1 ≥
n
2k

concludes the proof.

At this point, we have half of the puzzle: it remains to get a handle
on the variance of Z2 in both the far and uniform cases. We start by
providing an exact (albeit unwieldy) expression for it.

Var[Z2] = 1
n2

∑
i,j∈X

E[1{N i = 1}1{N j = 1}]− E[Z2]2

= 1
n2

∑
i∈X

E[1{N i = 1}] + 1
n2

∑
i ̸=j

E[1{N i = 1}1{N j = 1}]− E[Z2]2

= 1
n
E[Z2]− E[Z2]2 + n− 1

n

∑
i ̸=j

p(i)p(j)(1− (p(i) + p(j)))n−2 ,

where the last line relied on Eq. (2.14) to recognize E[Z2] in the first term,
and on the fact that E[1{N i = 1}1{N j = 1}] = n(n− 1)p(i)p(j)(1−
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(p(i) + p(j)))n−2 for i ̸= j. (Indeed, 1{N i = 1}1{N j = 1} is equal to
one if, and only if, out of the n samples two fall on i and j, respectively,
and the n− 2 others hit X \ {i, j}.)

This looks quite unwieldy; however, we can rearrange the term
E[Z2]2 to obtain the nicer expression

Var[Z2] = E[Z2](1− E[Z2])
n

+ n− 1
n

∑
i ̸=j

p(i)p(j)(1− p(i)− p(j))n−2 − E[Z2]2


≤ 1− E[Z2]
n

+
∑
i ̸=j

p(i)p(j)(1− p(i)− p(j))n−2 − E[Z2]2

(2.16)

For the uniform case, Eq. (2.16) simplifies quite a bit, and we get

Varuk
[Z2] ≤ 1

n

(
1−

(
1− 1

k

)n−1
)

+
(

1− 2
k

)n−2
−
(

1− 1
k

)2(n−1)

≤ n− 1
nk

+
(

1− 1
k

)2(n−2)
−
(

1− 1
k

)2(n−1)

≤ 1
k

+
(

1− 1
k

)2(n−2)
(

1−
(

1− 1
k

)2
)

= 1
k

+ 2
k

(
1− 1

k

)2(n−2)(
1− 1

2k

)
≤ 3
k

(2.17)

where the second inequality follows from 1 − 2x ≤ (1 − x)2, and
(1− x)m ≥ 1 −mx for m ≥ 1 and x ≤ 1. (As a side note, we proved
along the way that 1

n(1− Euk
[Z2]) ≤ 1

k , which will come in handy.)
This looks great! We just proved that, at least in the uniform case,

Varuk
[Z2] ≤ 3/k. By the same rule of thumb as in the previous argument

(Eq. (2.6)), we expect our test to work as long as the standard deviation
(the “noise”) of our statistic is smaller than the gap in expectations
(the “signal”), which by Lemma 2.2 gives the condition

Varuk
[Z2] ≤ 3

k
≪ ε4n2

16k2 ≤ ∆(p)2 .

Reorganizing, this yields the condition n ≫
√
k/ε2, which is exactly

what we want to prove. The problem, of course, is that we so far only
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have bounded the variance in one of the two cases; to conclude, we need
the last quarter of the puzzle.

To do so, we will invoke the following:

Lemma 2.3. Fix m ≥ 1 and k ∈ N. For any x1, . . . , xk ≥ 0 such that∑k
i=1 xi = 1, we have
m
∑

1≤i<j≤k xixj
(
(1− xi − xj)m−1 − (1− xi)m(1− xj)m

)∑k
i=1 xi(1− (1− xi)m)

≤ 1

Unfortunately, there is not much intuition we can provide about why
this inequality holds; and we defer its proof to the end of the chapter
(Section 2.5), focusing for now on how it will provide us with the last
piece of said puzzle. In view of resuming from Eq. (2.16), we expand
E[Z2]2 to write∑
i ̸=j

p(i)p(j)(1− p(i)− p(j))n−2 − E[Z2]2

=
∑
i ̸=j

p(i)p(j)(1− p(i)− p(j))n−2 −
∑
i,j

p(i)p(j)(1− p(i))n−1(1− p(j))n−1

≤
∑
i ̸=j

p(i)p(j)
(
(1− p(i)− p(j))n−2 − (1− p(i))n−1(1− p(j))n−1

)

≤ 1
n− 1

k∑
i=1

p(i)(1− (1− p(i))n−1) = 1− E[Z2]
n− 1

where the last inequality is Lemma 2.3 applied with m = n − 1 and
xi = p(i). Then, using this in Eq. (2.16) (and bounding 1/(n−1) ≤ 2/n)
leads to

Var[Z2] ≤ 3 · 1− Ep[Z2]
n

= 3
(1− Euk

[Z2]
n

+ Euk
[Z2]− Ep[Z2]

n

)
≤ 3

(1
k

+ ∆(p)
n

)
. (2.18)

Before invoking Chebyshev’s inequality, let us see why this is wonderful
news. The first term of the bound, 3/k, is the same as in the uniform
case, and we have discussed before how it would by itself lead to the
desired sufficient condition n≫

√
k/ε2. The second is new; by the same

rule of thumb, it will lead to the condition
3∆(p)
n

≪ ∆(p)2
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where one ∆(p) crucially cancels out, leaving us with ∆(p) ≫ 1/n.
Since ∆(p) ≥ ε2n

16k , a sufficient condition then becomes ε2n
k ≫

1
n , which

then will be satisfied as soon as n≫
√
k/ε.

Now that we have all the pieces of the puzzle, let us establish the
main result of this subsection:

Theorem 2.4. The unique-elements tester (Algorithm 2) is a testing al-
gorithm for uniformity with sample complexity n(k, ε, 1/3) = O(

√
k/ε2)

and time complexity O(n), provided that ε ≥ 15/k1/4.

Proof. For any p ∈ ∆k, let as before ∆(p) := Euk
[Z2] − Ep[Z2]. Of

course, if p = uk then ∆(p) = 0, and we know from Lemma 2.2 that
∆(p) ≥ ∆ := nε2

16k whenever dTV(p,uk) ≥ ε.6 We also obtained earlier
(in Eqs. (2.17) and (2.18)) a bound in the variance of Z2 in both the
uniform and “far” cases, so we have all the ingredients we need. Define
our threshold

τ := Euk
[Z2]− ∆

2
as in Algorithm 2.

• In the uniform case, the probability to output 0 (and thus make
a mistake) is bounded as

Pr[Z2 ≤ τ ] = Pr
[
Z2 ≤ Euk

[Z2]− ∆
2

]
≤ 4 Varuk

[Z2]
∆2 ≤ 3072k

ε4n2

by Chebyshev’s inequality, using Varuk
[Z2] ≤ 3/k and the defini-

tion of ∆. This in turn is less than 1/3 as long as n ≥ 96
√
k/ε2.

• In the “far” case, since Ep[Z2] = Euk
[Z2]−∆(p) and ∆(p) ≥ ∆

the probability to err by outputting 1 is

Pr[Z2 > τ ] = Pr
[
Z2 > Ep[Z2] + ∆(p)

2 + ∆(p)−∆
2

]
≤ Pr

[
Z2 > Ep[Z2] + ∆(p)

2

]
≤ 4 Varp[Z2]

∆(p)2 ≤ 12
k∆(p)2 + 12

n∆(p)

≤ 3072k
ε4n2 + 192k

ε2n2 ≤
3264k
ε4n2

6We assume throughout n ≤ k, and will enforce this at the end.
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using Varp[Z2] ≤ 3/k + 3∆(p)/n. The resulting bound is then
less than 1/3 for n ≥ 99

√
k/ε2.

The above analysis shows that both errors are less than 1/3 for, say,
n = ⌈99

√
k/ε2⌉. However, we did rely on Lemma 2.2, which requires

n ≤ k; given our choice of n, this in turns imposes a condition on ε (for
instance, one can check that ε ≥ 15/k1/4 suffices).

2.1.4 Modified χ2

If you are a statistician, or just took a Statistics class, or even got
lost on Wikipedia at some point and ended up on the wrong page at
the wrong time, you may know of Pearson’s χ2 test for goodness-of-fit:
for every element i of the domain, count how many times it appeared
in the samples, N i. Compute ∑i

(N i−n/k)2

n/k . Compare the result to a
predetermined threshold. This very natural idea, maybe not surprisingly,
works well! In particular, since N i ∼ Bin(n,p(i)), one can derive

E
[
k∑
i=1

(N i − n/k)2

n/k

]
= k

n

k∑
i=1

E
[(
N i −

n

k

)2
]

= k(n−1)∥p− uk∥22+k−1 ,

using moments of a Binomial random variable and Eq. (2.2). E: Check it!This does
look like a reasonable way to estimate the distance to uniformity via the
ℓ2 distance again. . . unfortunately, the variance will be quite annoying,
due to the correlations between terms of the sums.

To make the task easier, it is helpful to think of taking Poisson(n)
samples instead of exactly n, which will greatly simplify the analysis.
Then, under this (slightly different) sampling model the N i’s become
independent, with N i ∼ Poisson(np(i)): this is called Poissonization,
and can be done more or less without loss of generality since a Poisson(n)
random variable will be between 0.99n and 1.01n with overwhelming
probability. (See Appendix C for more on Poissonization, and why we
can use it “without loss of generality”).

The bad news is that it does not actually lead to the optimal
sample complexity: Poissonization introduces a bit more variance (as
we introduce extra randomness ourselves by taking a random number
of samples), and so the variance of this χ2 test can be too big due to
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Require: Multiset of n samples x1, . . . , xn ∈ X , parameters ε ∈ (0, 1]
and k = |X | ▷ Assumes Poissonization

1: Set τ ← 2nε2

2: Compute ▷ Can be done in O(n) time if X is known, O(n logn) if
only k is.

Z3 =
∑
j∈X

(N j − n/k)2 −N j

n/k

where N j ←
∑n
t=1 1{xt = j}.

3: if Z3 ≥ τ then return 0 ▷ Not uniform
4: else return 1 ▷ Uniform

Algorithm 3: Chi-Square Tester

the elements we only expect to see zero or once (so, most of them). The
good news is that a simple correction of that test, of the form

Z3 =
k∑
i=1

(N i − n/k)2 −N i

n/k
(2.19)

does have a much smaller variance, and a threshold test of the form
“Z3 > τ?” will yield the right sample complexity.7 Recalling that N i ∼
Poisson(np(i)) for all i, the expectation of Z3 will then just be

E[Z3] = nk∥p− uk∥22 (2.20)

which is perfect. Analyzing this test boils down, again, to bounding the
variance of Z3 and invoking Chebyshev’s inequality. . . Before doing so,
we will make a change which looks innocuous, but will come in quite
handy in Section 2.2 when generalizing beyond the uniform distribution:
let us rewrite

Z3 =
k∑
i=1

(N i − nuk(i))2 −N i

nuk(i)
where, of course, uk(i) = 1/k for all i ∈ [k]. Recalling that, by Pois-
sonization, all the N i’s are independent Poisson random variables, we

7In the multinomial (“non-Poissonized”) case, substracting N i was not necessary,
since that would correspond to removing overall k

n

∑k

i=1 N i = k, a constant term.
In the Poissonized case, however,

∑k

i=1 N i ∼ Poisson(n), and k
n

∑k

i=1 N i is not a
constant – it is a random variable with expectation k and (large) variance k2/n.
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will invoke the technical claim below, which follows from (somewhat
tedious, but straightforward) computations involving the moments of
Poisson random variables: E: Verify it:

Exercise 2.3.

Claim 2.2. Let µ, λ ≥ 0. If X ∼ Poisson(λ), then E
[
(X − µ)2 −X

]
=

(λ− µ)2 and E
[
((X − µ)2 −X)2] = (λ− µ)4 + 2λ2 + 4λ(λ− µ)2.

Given this, by linearity of expectation we immediately get8

E[Z3] =
k∑
i=1

E
[
(N i − nuk(i))2 −N i

]
nuk(i)

= n
k∑
i=1

(p(i)− uk(i))2

uk(i)

= n · χ2(p || uk) (2.21)

which here can further be simplified by χ2(p || uk) = k∥p− uk∥22, as the
denominator is constant and equal to 1/k; this establishes Eq. (2.20).

Turning to the variance, we want to relate Var[Z3] to known quanti-
ties, and in particular E[Z3]. To do so, we use independence of the N i’s
followed by the second part of the above claim to get

Var[Z3] =
k∑
i=1

Var[(N i − nuk(i))2 −N i]
n2uk(i)2

=
k∑
i=1

2n2p(i)2 + 4n3p(i)(p(i)− uk(i))2

n2uk(i)2

= 2
k∑
i=1

p(i)2

uk(i)2 + 4n
k∑
i=1

p(i)(p(i)− uk(i))2

uk(i)2

≤ 2
k∑
i=1

p(i)2

uk(i)2 + 4n

√√√√ k∑
i=1

p(i)2

uk(i)2 ·

√√√√ k∑
i=1

(p(i)− uk(i))4

uk(i)2

≤ 2
k∑
i=1

p(i)2

uk(i)2 + 4n

√√√√ k∑
i=1

p(i)2

uk(i)2 ·
k∑
i=1

(p(i)− uk(i))2

uk(i)

= 2
k∑
i=1

p(i)2

uk(i)2 + 4

√√√√ k∑
i=1

p(i)2

uk(i)2E[Z3] , (2.22)

8Here, χ2(p || q) =
∑k

i=1
(p(i)−q(i))2

q(i) denotes the chi-square divergence between
distributions p and q; for a refresher on this notion of distance, the reader is referred
to Appendix B.
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where the first inequality is Cauchy–Schwarz, and the second is mono-
tonicity of ℓp norms: namely, ℓ2 ≤ ℓ1. In order to proceed further, we
need to bound the quantity ∑k

i=1
p(i)2

uk(i)2 . The trick here will be to write,
using (a+ b)2 ≤ 2a2 + 2b2,

p(i)2 = ((p(i)− uk(i)) + uk(i))2 ≤ 2(p(i)− uk(i))2 + 2uk(i)2 ,

since then we have
k∑
i=1

p(i)2

uk(i)2 ≤ 2k + 2
k∑
i=1

(p(i)− uk(i))2

uk(i)2 = 2k + 2k
k∑
i=1

(p(i)− uk(i))2

uk(i)

= 2k
(

1 + E[Z3]
n

)
.

Putting this back in Eq. (2.22), we get

Var[Z3] ≤ 4k
(

1 + E[Z3]
n

)
+ 4
√

2k1/2E[Z3] + 4
√

2k
1/2

n1/2E[Z3]3/2 (2.23)

In particular, in the uniform case Euk
[Z3] = 0, and so Varuk

[Z3] ≤ 4k.
Before formally analyzing the resulting sample complexity via (once
more) Chebyshev’s inequality, let us do the usual check and compare
standard deviation (noise) to expectation gap (signal), and see if things
look promising. The gap in expectation will be, given Eq. (2.21), at least
∆ := nk · 4ε2

k = 4nε2; so, in the uniform case, we need Varuk
[Z3]≪ ∆2

which, given the above, is satisfied as long as n≫
√
k/ε2, since then

Varuk
[Z3] ≤ 4k ≪ 16n2ε4 ≤ ∆2 .

In the “far” case, for p at total variation distance at least ε from uniform,
the condition is Varp[Z3]≪ ∆(p)2 = Ep[Z3]2, which by Eq. (2.23) will
require

max
(
k,
k

n
Ep[Z3], k1/2Ep[Z3], k

1/2

n1/2Ep[Z3]3/2
)
≪ Ep[Z3]2 .

Considering each term separately, simplifying, and recalling that Ep[Z3] ≥
4nε2, we see that this will also hold as long as n≫

√
k/ε2.

We will make this formal, and show the following:
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Theorem 2.5. The χ2-based tester (Algorithm 3) is a testing algorithm
for uniformity with sample complexity n(k, ε, 1/3) = O(

√
k/ε2) and

time complexity O(n) in the Poissonized setting.
Proof. For any p ∈ ∆k, let as before ∆(p) := Ep[Z3]. By Eq. (2.20),
we know that if p = uk then ∆(p) = 0, and that ∆(p) ≥ ∆ := 4nε2

whenever dTV(p,uk) ≥ ε (recalling Eq. (2.1)). We also have our variance
bound from Eq. (2.23). Define our threshold

τ := ∆
2

as in Algorithm 3.
• In the uniform case, where Euk

[Z3] = 0, the probability to output
0 (and thus make a mistake) is bounded as

Pr[Z3 ≥ τ ] ≤ 4 Varuk
[Z3]

∆2 ≤ k

ε4n2

by Chebyshev’s inequality, using Varuk
[Z3] ≤ 4k and the definition

of ∆. This in turn is less than 1/3 as long as n ≥
√

3k/ε2.

• In the “far” case, since Ep[Z3] ≥ ∆ the probability to err by
outputting 1 is

Pr[Z3 < τ ] ≤ Pr
[
|Z3 − Ep[Z3]| > ∆(p)

2

]
≤ 4 Varp[Z3]

∆(p)2

≤
16k

(
1 + E[Z3]

n

)
+ 16
√

2k1/2E[Z3] + 16
√

2 k1/2

n1/2E[Z3]3/2

E[Z3]2

≤ k

n2ε4 + 4k
n2ε2 + 4

√
2k1/2

nε2 + 8
√

2k1/2

nε

≤ 5k
n2ε4 + 12

√
2k1/2

nε2

first using Eq. (2.23), simplifying, then E[Z3] ≥ nε2. By solving
the inequality 5x2 + 12

√
2x ≤ 1/3, we see that the result is at

most 1/3 for n ≥ 52
√
k/ε2.

The above analysis shows that both errors are less than 1/3 for, say,
n = ⌈52

√
k/ε2⌉; this concludes the proof.
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2.1.5 Empirical distance to uniform

Let us take a break from ℓ2 and consider another, very natural thing
to try: the plugin estimator. Since we have n samples from p, we can
compute the empirical estimator of the distribution, p̂n, based on these
n samples. Now, we want to test dTV(p,uk) = 0 vs. dTV(p,uk) > ε?
Why not consider

Z4 := dTV(p̂,uk) (2.24)

the empirical distance to uniform? A reason might be: this sounds like a
terrible idea. Unless n = Ω(k) (which is much more than what we want),
we will not have observed most of the domain elements even once, and
the empirical distribution p̂n will be at distance 1− o(1) from uniform,
even if p is actually uniform.

That’s the thing, though: the devil is in the o(1) details. Sure, E[Z4]
will be almost 1 whether p is uniform or far from it unless n = Ω(k).
But this “almost” will be different in the two cases! Carefully analyzing
this tiny gap in expectation, and showing that Z4 concentrates well
enough around its expectation to preserve this tiny gap, amazingly leads
to a tester with optimal sample complexity n = Θ(

√
k/ε2). Let us see

how.

For simplicity of exposition, we focus here on the case n ≤ k, though
the analysis of the test can be extended to all parameter regimes –
see Diakonikolas et al. (2018) for the full general case. The argument
proceeds in two steps: first, computing and bounding the expectation
of Z4 under the uniform and the far cases separately is not going to
really work, so instead we will bound the expectation gap ∆(p) :=
Ep[Z4]−Euk

[Z4] directly (a little like in the case of the unique elements-
based tester). Then, once the gap in expectation is established, we
will once again argue concentration of Z4 as usual by a variance-based
(Chebyshev’s inequality) argument – but this time diversifying our
toolkit and using a different tool, the Efron–Stein lemma, to bound the
variance.

40



DRAFT

Require: Multiset of n samples x1, . . . , xn ∈ X , parameters ε ∈ (0, 1]
and k = |X |
▷ Set the threshold τ , depending on the parameter regime.

1: if n ≤ k then
2: τ ← n2ε2

32ek2

3: else if k < n ≤ k/ε2 then
4: τ ← c1 · ε2√n/k ▷ c1 > 0 is some absolute constant.
5: else
6: τ ← c2 · ε ▷ c2 > 0 is some absolute constant.
7: Compute ▷ Can be done in O(n) time if X is known, O(n logn) if

only k is.

Z4 = dTV(p̂,uk) = 1
2

k∑
j=1

∣∣∣∣N j

n
− 1
k

∣∣∣∣
where N j ←

∑n
t=1 1{xt = j}.

8: if Z4 ≥ Euk
[Z4] + τ then return 0 ▷ Not uniform

9: else return 1 ▷ Uniform

Algorithm 4: empirical-distance tester

The expectation gap ∆(p). From the definition of total variation
distance, we can rewrite

Z4 =
k∑
i=1

(
p̂n(i)− 1

k

)
1{p̂n(i) > 1/k} = 1

n

k∑
i=1

(
N i −

n

k

)
+

where as previously N i denotes the number of samples falling on element
i, and x+ := max(x, 0). For the sake of the analysis, we will introduce
the multivariate function

S(x1, . . . , xn) := 1
n

k∑
i=1

(
N i(x1, . . . , xn)− n

k

)
+

(2.25)

and the function µ : ∆k → R given by

µ(p) := Ep[S(X1, . . . , Xn)] .
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(Note that Ep[Z4] = µ(p).) Then, since N i ∼ Bin(n,p(i)) under p, we
have the exact expression

µ(p) = 1
n

k∑
i=1

n∑
ℓ=0

(
n

ℓ

)
p(i)ℓ(1− p(i))n−ℓ

(
ℓ− n

k

)
+

= 1
n

k∑
i=1

n∑
ℓ=1

(
n

ℓ

)
p(i)ℓ(1− p(i))n−ℓ

(
ℓ− n

k

)
since (ℓ− n/k)+ > 0 for ℓ ≥ ⌈n/k⌉ = 1 (recall that we assume
n ≤ k). Using the facts that ∑n

ℓ=0
(n
ℓ

)
p(i)ℓ(1 − p(i))n−ℓ = 1 and∑n

ℓ=0 ℓ
(n
ℓ

)
p(i)ℓ(1− p(i))n−ℓ = np(i), the inner sum considerably sim-

plifies and we get

µ(p) = 1
k

k∑
i=1

(1− p(i))n (2.26)

Since our goal is to lower bound ∆(p) = µ(p)− µ(uk), the view of µ
as a multivariate function suggests a Taylor expansion around µ(uk).
Namely, for any p ∈ ∆k, we can write by Taylor’s theorem

µ(p) = µ(uk) + ∇µ(uk)⊤(p− uk) + 1
2(p− uk)⊤H(q)(p− uk)

where q = (1− θ)uk + θp for some θ ∈ [0, 1], and H is the Hessian of µ:
Hi,j(q) = ∂2µ

∂xi∂xj
(q). Given Eq. (2.26), we can compute explicitly both

the gradient and the Hessian: first, denoting by 1k the all-one vector,

∇µ(uk) =
(
∂µ

∂x1
(uk), . . . ,

∂µ

∂xk
(uk)

)
= −n

k

(
1− 1

k

)n−1
1k

so ∇µ(uk)⊤(p− uk) = −n
k (1− 1

k )n−1∑k
i=1(p(i)− 1

k ) = 0. Then, as µ
is separable, H will be diagonal: Hi,j(q) = 0 for i ̸= j, while

Hi,i(q) = n(n− 1)
k

(1− q(i))n−2

for all i ∈ [k]. Recalling our Taylor expansion, this means that

∆(p) = 1
2(p− uk)⊤H(q)(p− uk)

= n(n− 1)
2k

k∑
i=1

(1− q(i))n−2
(

p(i)− 1
k

)2
(2.27)

42



DRAFT

where again q is a probability distribution such that q = (1− θ)uk + θp
for some θ ∈ [0, 1]. To proceed, a natural idea is to restrict the sum to
indices for which we can non-trivially bound (1−q(i))n−2; in particular,
focusing on the indices i for which p(i) < 1/k will do, since for those
we must have q(i) ≤ 1/k as well. This leads to writing

∆(p) ≥ n(n− 1)
2k

k∑
i=1

(1− q(i))n−2
(

p(i)− 1
k

)2
1{p(i) < 1/k}

≥ n(n− 1)
2k

(
1− 1

k

)n−2 k∑
i=1

(
p(i)− 1

k

)2
1{p(i) < 1/k}

≥ n(n− 1)
2k

(
1− 1

k

)n−2 1
k

(
k∑
i=1

(1
k
− p(i)

)
1{p(i) < 1/k}

)2

≥ n(n− 1)
2k2

(
1− 1

k

)k−2
ε2 ≥ n2ε2

4ek2 (2.28)

where the third inequality is Cauchy–Schwarz, the fourth is the definition
of total variation distance along with dTV(p,uk) ≥ ε (and, in the
exponent, n ≤ k), and the last is (1− 1/k)k−2 ≥ 1/e for k ≥ 2.

Before turning to proving concentration of Z4 (that is, showing
that the expectation gap, our signal, is not drowned by the random
fluctations of Z4 around its expectation), we will make an observation
which will help in the analysis. Since we restricted ourselves to the
regime n/k ≤ 1, the i-th summand of S in Eq. (2.25) is non-zero only
when N i ≥ 1, and thus we can rewrite

Z4 = 1
n

k∑
i=1

((
N i −

n

k

)
+ n

k
1{N i = 0}

)

= 1
n

k∑
i=1

(
N i −

n

k

)
+ 1
k

k∑
i=1

1{N i = 0}

= 1
k

k∑
i=1

1{N i = 0} (2.29)

where the last equality follows from ∑k
i=1N i = n. That is, in this

regime, Z4 is exactly the fraction of unseen elements of the domain;
this readily allows one to retrieve Eq. (2.26), and also lets us relate Z4
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to the “unique elements” statistic Z2 from Section 2.1.3.9

Concentration of Z4. As you may have guessed, we will show that Z4
concentrates around its expectation via Chebyshev’s inequality, which
requires us to bound Var[Z4] in both the uniform and “far” cases. In
order to diversify our toolkit, we will do so by invoking the Efron–Stein
inequality, which allows us to bound the variance of a function of n
independent random variables by the expected quadratic change of this
function when only one sample is re-randomized: for a function f of n
variables,

Var[f(X)] ≤ 1
2

n∑
t=1

E
[(
f(X)− f(X(t))

)2
]

(2.30)

where X = (X1 . . . , Xn) and X(t) = (X1, . . . , X
′
t, . . . , Xn), with X ′

t

being an independent copy of Xt.
We apply this to Z4, i.e., the function S defined in Eq. (2.25); given

that S is symmetric and that all Xt’s are i.i.d. and distributed according
to p, we get

Var[Z4] ≤ n

2Ep
[(
S(X1, . . . , Xn−1, Xn)− S(X1, . . . , Xn−1, X

′
n)
)2]

= n

2k2Ep

[( k∑
i=1

(
1{Ni = 0} − 1

{
N ′
i = 0

}))2
]

where we wroteNi := N i(X1, . . . , Xn−1, Xn) andN ′
i := N i(X1, . . . , Xn−1, X

′
n),

and used the expression of S from Eq. (2.29). To handle this quantity, ob-
serve that since only the n-th sample changes,∑k

i=1 |1{Ni = 0} − 1{N ′
i = 0}|

is at most 1: and this happens when Xn falls on an element i not yet
observed in the first n−1 samples while X ′

n falls on an element j already

9Again, this relation only holds in the specific regime n ≤ k; while we do not
cover the case n > k here, the guarantees of Z4 extend to this other regime; the
identity Eq. (2.29), however, does not.
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observed, or vice-versa. That is, we can write

Var[Z4] ≤ n

k2
∑
i ̸=j

p(i)p(j) Pr[N i(X1, . . . , Xn−1) = 0, N j(X1, . . . , Xn−1) ≥ 1]

= n

k2
∑
i ̸=j

p(i)p(j)
(
(1− p(i))n−1 − (1− p(i)− p(j))n−1

)
≤ n

k2
∑
i,j

p(i)p(j)
(
1− (1− p(j))n−1

)

= n

k2

(
1−

k∑
j=1

p(j)(1− p(j))n−1
)

(2.31)

where the first inequality follows the above discussion, taking the ex-
pectation over Xn, X

′
n and using symmetry between the two cases

mentioned; the second inequality uses monotonicity of the function
y 7→ (1−x)m− (1−x− y)m on [0, x], and adds back the diagonal terms
i = j to the sum afterwards; and the last equality uses ∑i p(i) = 1.10

Very conveniently, in the uniform case Eq. (2.31) leads to the bound

Varuk
[Z4] ≤ n

k2

(
1−

(
1− 1

k

)n−1
)
≤ n(n− 1)

k3 (2.32)

which combined with our bound Eq. (2.28) on the expectation gap leads
to the condition

n2

k3 ≪
n4ε4

k4

satisfied for n ≫
√
k/ε2. In the far case, a similar bound is easy to

obtain for any p with ∥p∥∞ ≲ 1/k, since

Varp[Z4] ≤ n

k2

(
1−

k∑
j=1

p(j)(1− ∥p∥∞)n−1
)
≤ n(n− 1)

k2 · ∥p∥∞ ,

(2.33)

so it would be quite nice if we could argue this was, in some sense, the
only case we needed to worry about. Which brings us to the second new
tool to add to our toolkit: an argument based on stochastic dominance,
which will let us do exactly that. First, let us recall the key concept:

10Interestingly, the bound we just obtained is exactly Var[Z4] ≤ n
k2 (1 − E[Z2]),

where Z2 is the “unique elements tester” from Section 2.1.3.
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Definition 2.1. Let A,B be two (real-valued) random variables. We
say that A stochastically dominates B if Pr[A ≥ t] ≥ Pr[B ≥ t] for all
t ∈ R; or, in terms of cumulative distribution functions, FA(t) ≤ FB(t)
for all t.

In our case, we have a random variable Z4, and in the “far” case we
want to prove Pr[Z4 ≥ τ ] is large (where τ is our threshold, based on
the expectation gap). So if, for each p in the “far” case, we can argue
there is a p′ with ∥p′∥∞ ≲ 1/k (i.e., which we know how to analyze)
such that Z4(p) stochastically dominates Z4(p′), then we are good.

To do so, we need two more steps: first, the notion of majorization,
and how this relates to stochastic dominance.

Definition 2.2. For a vector x ∈ Rk, define x↓ ∈ Rk as the vector with
the same components, but sorted in non-increasing order. Then, given
two vectors x, y ∈ Rk, we say that y majorizes x (denoted y ⪰ x) if∑ℓ
i=1 y

↓
i ≥

∑ℓ
i=1 x

↓
i for all 1 ≤ ℓ ≤ k, and ∑k

i=1 y
↓
i = ∑k

i=1 x
↓
i .

The key relation between vector majorization and stochastic domi-
nance is given in the following theorem:

Theorem 2.6. Let f : Rk → R by a symmetric convex function. For a
probability distribution p ∈ ∆k and n ∈ N, define the random variable
Xn(p) as follows: let N1, . . . , Nk be the counts of each domain element
among n i.i.d. samples from p, and set Xn(p) = f(N1, . . . , Nk). Then,
for any p,q such that p ⪰ q, Xn(p) stochastically dominates Xn(q).

We will not prove this theorem, but instead use it as follows. First,
we show that for every p which is far from uniform there exists some p̄
which majorizes p, is still far from uniform, and importantly has small
ℓ∞ norm:

Lemma 2.7. For any p ∈ ∆k, let p̄ ∈ ∆k denote the probability
distribution obtained by averaging p over its K := ⌈k/2⌉ heaviest
elements. Then (1) p ⪰ p̄, (2) ∥p̄∥∞ ≤ 2/k, and (3) dTV(p̄,uk) ≥
1
2dTV(p,uk).

Proof. Clearly, all properties are invariant by permutation of the domain,
so we can assume for simplicity that p is non-increasing: p(1) ≥ p(2) ≥
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· · · ≥ p(k), and p̄(1) = · · · = p̄(K) = 1
K

∑K
i=1 p(i), p̄(i) = p(i) for

i ≥ K. In particular, this immediately implies (1), as well as (2) (since
∥p̄∥∞ = p̄(1) ≤ 2/k).

Let us prove (3), which states that this averaging does not decrease
the distance too much. Consider the minimal set S ⊆ [k] such that
dTV(p,uk) = p(S)− uk(S): we know that S = { x : p(x) > 1/k }. By
motonicity of p, this implies that S = {1, . . . , ℓ} for some ℓ ≥ 1.

• If ℓ ≥ K, then p̄(S) = p(S), and so dTV(p̄,uk) = dTV(p,uk);

• otherwise, ℓ < K, in which case we look at T = [k] \ S, which
satisfies dTV(p,uk) = uk(T )−p(T ). Let T ′ := {K+1, . . . , k} ⊊ T ;
by monotonicity, p(T\T ′)

|T\T ′| ≥
p(T ′)
|T ′| , implying p(T ′) ≤ |T ′|

|T | p(T ). But
then, since p = p̄ on T ′,

dTV(p̄,uk) = sup
R⊆[k]

(uk(R)− p̄(R)) ≥ uk(T ′)− p̄(T ′)

= |T
′|
|T |

uk(T )− p(T ′) ≥ |T
′|
|T |

(uk(T )− p(T ))

= |T
′|
|T |

dTV(p,uk) ≥
1
2dTV(p,uk) ,

the last inequality following from |T ′|
|T | = k−K

k−ℓ ≥
k−⌈k/2⌉
k−1 ≥ 1

2 .

This concludes the proof of the lemma.

Note that by the data processing inequality Fact 1.1, we have
dTV(p̄,uk) ≤ dTV(p,uk), so the averaging can change the distance to
uniformity by a factor at most 2.11

Combining Theorem 2.6 and Lemma 2.7 (conveniently, the function
S from Eq. (2.25) is indeed symmetric and convex), we get that for
every p such that dTV(p,uk) ≥ ε, there exists some “nicer” p̄ such that
dTV(p̄,uk) ≥ ε/2 with ∥p̄∥∞ ≤ 2/k and, for any choice of threshold τ ,

Pr
p

[Z4 ≥ τ ] ≥ Pr
p̄

[Z4 ≥ τ ] . (2.34)

11Moreover, this factor 2 cannot be improved upon, as one can check with, e.g.,
p = k

k−1 εδ1 +
(
1 − k

k−1 ε
)
uk, for which dTV(p, uk) = ε, but dTV(p̄, uk) = 1+o(1)

2 ε.

47



DRAFT

Thus, it suffices to choose a suitable τ for which the RHS is at least 2/3
(along with Pruk

[Z4 ≥ τ ] ≤ 1/3, of course) to conclude. By Eq. (2.28)
(but for ε/2, not ε), we know that the expectation gap for such a p̄ is
at least ∆(p̄) ≥ n2ε2

16ek2 . Moreover, now we can use Eq. (2.33) to get the
variance bound

Varp̄[Z4] ≤ 2n(n− 1)
k3 , (2.35)

which lets us establish the following theorem:

Theorem 2.8. The empirical-distance tester (Algorithm 4) is a testing al-
gorithm for uniformity with sample complexity n(k, ε, 1/3) = O(

√
k/ε2)

and time complexity O(n).

Proof. As discussed above, we only prove here the case n ≤ k, i.e.,
ε = Ω

(
1/k1/4

)
; however, the statement holds for all regimes. For any

p ∈ ∆k, let ∆(p) := Ep[Z4]−Euk
[Z4]. Clearly, if p = uk then ∆(p) = 0;

if dTV(p,uk) ≥ ε, by stochastic dominance it suffices to consider the
corresponding p̄, which satisfies ∆(p̄) ≥ n2ε2

16ek2 := ∆. We also have our
variance bounds from Eqs. (2.32) and (2.33). Define our threshold

τ := ∆
2 = n2ε2

32ek2

as in Algorithm 4 (for this regime of parameters).

• In the uniform case, the probability to output 0 (and thus make
a mistake) is bounded as

Pr[Z4 ≥ Euk
[Z4] + τ ] ≤ Varuk

[Z4]
τ2 ≤ n(n− 1)

k3 · (32e)2k4

n4ε4

which is less than 1/3 as long as n ≥ 32e
√

3k/ε2.

• In the “far” case, the probability to err by outputting 1 is

Pr
p

[Z4 < Euk
[Z4] + τ ] ≤ Pr

p̄
[Z4 < Euk

[Z4] + τ ]

≤ Pr
p̄

[Z4 < Ep̄[Z4]− τ ]

≤ Varp[Z4]
τ2

≤ 2n(n− 1)
k3 · (32e)2k4

n4ε4
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using Eq. (2.33), simplifying, then E[Z3] ≥ nε2. This is less than
1/3 as long as n ≥ 32e

√
6k/ε2.

The above analysis shows that both errors are less than 1/3 for, say,
n = ⌈32e

√
6k/ε2⌉; this concludes the proof.

Remark 2.3. It is unclear whether one could avoid using the first
(very convenient) “stochastic dominance hammer” (Theorem 2.6), and
instead relate directly the bound on Varp[Z4] from Eq. (2.31) to ∆(p)
for arbitrary “far” distribution p in order to obtain the right sample
complexity.

2.1.6 Random binary hashing

Now we turn to a tester that is not sample-optimal – but has other
advantages, and whose analysis contains a couple insighful aspects. The
main idea is that, while large domains are complicated, if there is one
thing we know how to do optimally it is estimating the bias of a coin.
That is, we know how to handle the case k = 2:

Fact 2.1 (Bias of a coin). E: Prove
this! Exer-
cise 2.4.

Given i.i.d. samples from a Bernoulli with
unknown parameter α ∈ [0, 1], estimating α to an additive η with
probability 1− δ can be done with (and requires) Θ

(
log(1/δ)
η2

)
samples.

Of course, we do not have a probability distribution over {0, 1} here,
we have a much more problematic (k − 1)-dimensional object. However,
what prevents us from making our n samples into i.i.d. samples from
a Bernoulli? Let us uniformly randomly partition the domain [k] in
two sets S and [k] \ S, and convert each sample into a {0, 1} value
accordingly: X ′

i := 1{Xi ∈ S}, for 1 ≤ i ≤ n.
This gives us n i.i.d. samples from a Bernoulli random variable

with parameter αS(p) := p(S): let us estimate it! Since we know S,
we know exactly what this should be under the uniform distribution:
αS(uk) = uk(S) = |S|/k. If only we could argue that αS(p) noticeably
differs from uk(S) (with high probability over the random choice of S)
whenever p is ε-far from uniform, we would have a tester: just estimate
the bias αS(p) to high enough accuracy. Luckily for us, this is, indeed,
the case:
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Require: Multiset of n samples x1, . . . , xn ∈ X , parameters ε ∈ (0, 1]
and k = |X |

1: Set τ ← ε
2
√

2k
2: Pick a random subset S ⊆ [k] by including each i ∈ [k] independently

with probability 1/2. ▷ 4-wise independence suffices.
3: Compute ▷ Can be done in O(n) time.

Z5 = 1
n

n∑
i=1

1{xi ∈ S}

4: if
∣∣∣Z5 − |S|

k

∣∣∣ ≥ τ then return 0 ▷ Not uniform
5: else return 1 ▷ Uniform

Algorithm 5: Binary Hashing Tester

Require: Multiset of n samples x1, . . . , xn ∈ X , parameters ε ∈ (0, 1]
and k = |X |
▷ T ∈ N is an absolute constant, whose value is related to the hidden
constant in Fact 2.1.

1: Partition the n samples into multisets M1 . . . ,MT of size ⌊n/T ⌋
2: for all 1 ≤ t ≤ T do ▷ Repeat the tester independently
3: Run Algorithm 5 on the samples from Mt and parameters ε, k
4: Let bi ∈ {0, 1} be the output ▷ b1, . . . ,bT are i.i.d.
5: Use Fact 2.1 on b1, . . . ,bT with parameters η ← 1

200 and δ ← 1
3 to

get b̂ ∈ [0, 1]: estimate of the probability Algorithm 5 returns 0
6: if b̂ ≥ 1

100 + η then return 0 ▷ Not uniform
7: else return 1 ▷ Uniform

Algorithm 6: Amplifying the Binary Hashing Tester

Lemma 2.9 (Random Binary Hashing). Let p,q ∈ ∆k. Then

Pr
S

[
|p(S)− q(S)| ≥ 1

2
√

2
∥p− q∥2

]
≥ 1

48 ,

where S ⊆ [k] is a uniformly random subset of [k].

We defer the proof of this lemma to the end of the subsection, and
show how to use it. The first observation is that, regardless of the random
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choice of S, if p = uk then p(S) = uk(S) = |S|/k with probability
one, and so estimating the bias αS(p) will (with high probability) not
lead to any rejection. However, if dTV(p,uk) ≥ ε, then by Eq. (2.1)
∥p− uk∥2 ≥ 2ε/

√
k, and so |p(S) − |S|/k| ≥ ε/

√
2k with constant

probability (over the choice of S). Whenever this happens, estimating
the bias αS(p) to ±ε/(2

√
2k) will allow us to detect that p was far

from uniform, and this can be done with

n ≍ 1
(ε/
√
k)2

= k

ε2

samples by Fact 2.1. Of course, there is a catch: we will only detect
it when there is some bias to detect, i.e., when the random set S we
choose is “good;” which we only proved happens with probability at
least 1/48. But a constant probability to distinguish between uniform
and far from uniform is enough: repeating independently the test several
times will let us amplify the success probability to 2/3.

Theorem 2.10. The binary hashing tester (Algorithm 6) is a testing
algorithm for uniformity with sample complexity n(k, ε, 1/3) = O(k/ε2)
and time complexity O(n).

Proof. Set τ ← ε
2
√

2k , as in Algorithm 5, and for p ∈ ∆k let αS(p) :=
p(S) denote the bias of the resulting coin; note that this is a random
variable, over the choice of S ⊆ [k], and that E[Z5 | S] = αS(p). We
will use Fact 2.1 to get, for n = O(1/τ2), a probability at least 99/100
to correctly estimate the bias up to an additive τ .

• In the uniform case, αS(uk) = |S|/k always, and the probability
to output 0 (and thus make a mistake) is therefore bounded for
every S by

Pr[ |Z5 − αS(uk)| ≥ τ | S ] ≤ 1/100 ,

where the inequality holds by Fact 2.1.

• In the “far” case, denote by E the event that S is “good,” that is

E := {|αS(p))− αS(uk)| ≥ ε/
√

2k = 2τ}

which by Lemma 2.9 we know satisfies PrS [E ] ≥ 1/48.
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The probability to err by outputting 1 is then at most

Pr
p,S

[|Z5 − αS(uk)| < τ ] ≤ Pr
p,S

[|Z5 − αS(uk)| < τ | E ] Pr
S

[E ] + Pr
S

[
E
]

≤ 1
48 Pr

p,S
[|Z5 − αS(p)| > τ | E ] + 47

48

≤ 1
48 ·

1
100 + 47

48 <
98
100

where we again used Fact 2.1.

The above analysis shows that Algorithm 5 will output 0 (reject) with
probability less than 1/100 under the uniform distribution, but with
probability at least 2/100 under any “far” distribution. This is enough
to be able to distinguish between the two cases: by repeating the test
independently O(1) times to estimate the rejection probability (which
can be seen as a Bernoulli random variable with bias either more than
2/100 or less than 1/100), Fact 2.1 (again!) guarantees that we can
decide which of the two cases holds, and be correct with probability at
least 2/3: this is what Algorithm 6 does. This concludes the proof.

It only remains to provide the proof of the binary hashing lemma:

Proof of Lemma 2.9. If p = q, then the statement trivially holds as
|p(S)− q(S)| = 0 with probability one; we thus assume p ̸= q. Write
δ := p−q ∈ Rk, so that p(S)−q(S) = ∑k

i=1 δiSi, where S1, . . . , Sk are
independent Bern(1/2) (where Si indicates whether i ∈ S). Equivalently,
since ∑k

i=1 δi = 0 we can write p(S)−q(S) = 1
2Z, where Z := ∑k

i=1 δiξi
for ξ1, . . . , ξk i.i.d. Rademacher (uniform on {±1}). By linearity of
expectation, it is immediate to check that E[Z] = 0 (although we will
not use this), and that by independence

E
[
Z2
]

=
∑

1≤i,j≤k
δiδjE[ξiξj ] =

k∑
i=1

δ2
i = ∥δ∥22 ,

so what we want to prove can be rewritten Pr
[
Z2 ≥ 1

2E
[
Z2]] ≥ 1/48.

That is, we want an anticoncentration result,12 which suggests one of
12Indeed, we aim to show that, with constant probability, Z stays away from its

expectation E[Z] = 0 – i.e., that it does not concentrate too much around E[Z].
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the most versatile tools for this, the Paley–Zygmund inequality:13

Theorem 2.11 (Paley–Zygmund inequality). Let U be a non-negative
random variable with finite variance. Then, for every θ ∈ [0, 1],

Pr[U ≥ θE[U ]] ≥ (1− θ)2E[U ]2

E[U2] .

We will apply this to Z2, which is indeed non-negative. Unfortunately,
this means we need to compute E

[
Z4], in order to compare it to E

[
Z2]2.

We could do so directly, by expanding
(∑k

i=1 δiξi
)4, keeping track of

the various products appearing and using linearity of expectation. This
is quite cumbersome; instead, we will take a shortcut and bound the
moment-generating function (MGF) of Z. For any λ ∈ R,

E
[
eλZ

]
=

k∏
i=1

E
[
eλδiξi

]
≤

k∏
i=1

e
λ2
2 δ

2
i = e

λ2
2 ∥δ∥2

2

relying on, e.g., Hoeffding’s Lemma for the inequality. Using the Taylor
expansion of ex along with the fact that Z is symmetric (so all its odd
moments cancel out), we have E

[
eλZ

]
= ∑∞

ℓ=0
λ2ℓ

(2ℓ)!E
[
Z2ℓ

]
≥ λ4

4! E
[
Z4],

and so, for any λ ̸= 0,

E
[
Z4
]
≤ 24
λ4 e

λ2
2 ∥δ∥2

2 = 3
2∥δ∥

4
2 ·
(

4
∥δ∥22λ2

· e
λ2
4 ∥δ∥2

2

)2

.

In particular, by studying the function x > 0 7→ ex/x we see that the
RHS is minimized for λ = 2/∥δ∥2, showing that E

[
Z4] ≤ 3e2

2 ∥δ∥
4
2. We

can finally apply Theorem 2.11, getting that, for every θ ∈ [0, 1],

Pr
[
Z2 ≥ θE

[
Z2
]]
≥ (1− θ)2E

[
Z2]2

E[Z4] ≥ (1− θ)2 2
3e2 ≥

(1− θ)2

12 .

Choosing θ = 1/2 then concludes the proof.
13The Paley–Zygmund inequality is not technically an anticoncentration result

itself, but instead a concentration inequality, as it states that the probability of
the lower tail (far below the expectation) cannot be too large. Still, it is often
used to derive anticoncentration results when applied to quantities of the form
U = (X − E[X])2, as it then provides a lower bound on the probability that
|X − E[X]| is large (i.e., that X is away from its expectation).
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Remark 2.4. The proof of this lemma established a little more than
stated: first, we actually showed a tradeoff, where for every α ∈ [0, 1/2]

Pr
S

[ |p(S)− q(S)| ≥ α∥p− q∥2 ] ≥ 1
12(1− 4α2)2 .

Second, although our proof via the MGF used full independence of the
ξi’s (and thus a truly uniformly random set S), this was only to obtain
bounds on the first 4 moments of Z, which is all that the Paley–Zygmund
lemma eventually requires. Any distribution for S with the same first 4
moments will then lead to the same guarantees! In particular, instead of
a truly uniformly random S, one can instead use a 4-wise independent
hash function, which requires significantly less randomness and can be
much easier.

Finally, we conclude this section by mentioning a generalization of
the binary hashing lemma (Lemma 2.9) to an arbitrary number of parts:

Theorem 2.12 (Domain Compression Lemma). There exist absolute
constants c1, c2 > 0 such that the following holds. For any 2 ≤ ℓ ≤ k

and any p,q ∈ ∆k,

Pr
Π

dTV(pΠ,qΠ) ≥ c1

√
ℓ

k
dTV(p,q)

 ≥ c2 ,

where Π = (Π1, . . .Πℓ) is a uniformly random partition of [k] in ℓ subsets,
and pΠ ∈ ∆ℓ denotes the probability distribution on [ℓ] induced by p
and Π via pΠ(i) = p(Πi).

This theorem, which we will not prove, can be seen as some type
of “one-sided” dimensionality reduction for probability distributions,
and lets us trade domain size for distances. In some settings, this can
lead to better sample complexities, e.g., by starting with some testing
algorithm and optimizing its sample complexity n(ℓ, ε

√
ℓ/k, 1/3) as a

function of ℓ: we will get back to this in Section 4.3.

2.1.7 Bipartite collisions

Recall that in the collision-based tester from Section 2.1.2, we took
a multiset S of n samples from p and defined our statistic Z1 as the
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(normalized) number of “collisions” in S. That is fine, but requires to
keep in memory all the samples observed so far. One related idea would
be to instead take two multisets S1, S2 of size n1 and n2, and only count
“bipartite collisions” – i.e., collisions between a sample of S1 and one of
S2:

Z6 = 1
n1n2

∑
(x,y)∈S1×S2

1{x = y} (2.36)

One can check that E[Z6] = ∥p∥22: we are back to using ℓ2 as a proxy!
Compared to the “vanilla” collision-based test, this is more flexible
(S1, S2 need not be of the same size), and thus lends itself to some
settings where a tradeoff between n1 and n2 is desirable: we will see
that one needs n1n2 ≳ k/ε4 and min(n1, n2) ≳ 1/ε2, and the resulting
sample complexity is n = n1 + n2. For the case n1 = n2, this retrieves
the optimal n ≍

√
k/ε2.

Require: Multisets S1, S2 of n1 and n2 samples x1, . . . , xn1 ∈ X ,
y1, . . . , yn2 ∈ X , parameters ε ∈ (0, 1] and k = |X |

1: Set τ ← 1+ 1
2 ε

2

k

2: Compute ▷ Can be done in O(n) time if X is known, O(n logn) if
only k is.

Z6 = 1
n1n2

n1∑
s=1

n2∑
t=1

1{xs = yt} .

3: if Z6 ≥ τ then return 0 ▷ Not uniform
4: else return 1 ▷ Uniform

Algorithm 7: Bipartite Collision-Based Tester

To bound the variance of Z6, we start by expanding the square Z2
6
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and breaking the resulting double sum in 4 cases to get

n1
2n2

2E
[
Z2

6

]
=

∑
(x,y)∈S1×S2

∑
(x′,y′)∈S1×S2

E
[
1{x = y}1

{
x′ = y′}]

=
∑
x∈S1

∑
y∈S2

E[1{x = y}]

+
∑
x∈S1

∑
y ̸=y′∈S2

E
[
1
{
x = y = y′}]

+
∑

x ̸=x′∈S1

∑
y∈S2

E
[
1
{
x = x′ = y

}]
+

∑
x ̸=x′∈S1

∑
y ̸=y′∈S2

E[1{x = y}]E
[
1
{
x′ = y′}]

= n1n2∥p∥22 + n1n2(n1 + n2 − 2)∥p∥33 + n1n2(n1 − 1)(n2 − 1)∥p∥42 .

From Var[Z6] = E
[
Z2

6
]
− E[Z6]2, we obtain

Var[Z6] = 1
n1n2

∥p∥22 + n1 + n2 − 2
n1n2

∥p∥33 −
n1 + n2 − 1

n1n2
∥p∥42

≤ 1
n1n2

∥p∥22 + n1 + n2
n1n2

(∥p∥33 − ∥p∥
4
2) , (2.37)

using as in the proof of Theorem 2.1 the fact that ∥p∥33 ≥ ∥p∥
4
2 to

obtain the slightly nicer-looking upper bound of Eq. (2.37). Note that
when n1 = n2 = n

2 , we retrieve the bound on Var[Z1] from Eq. (2.9)!
Specifically, we have exactly the same expression as in Eq. (2.9), but
with the factor 4/n replaced by 1

n1n2
and 4/n2 replaced by n1+n2

n1n2
. This

is good – we could follow the exact same analysisE:
Exercise 2.6. as in the proof

of Theorem 2.1 to obtain, in the uniform case,

Pr
uk

[
Z6 ≥

1 + 2ε2

k

]
≤ k

4ε4n1n2
,

and, in the “far” case,

Pr
p

[
Z6 <

1 + 2ε2

k

]
≤ 5k

4ε4n1n2
+ n1 + n2

n1n2

(
2
√
k

ε
+ 3
ε2

)
. (2.38)

At first glance, this looks perfect: our tester will be correct in both
cases as long as n1n2 ≳ k/ε4, which is what we want, and n1n2

n1+n2
≳

56



DRAFT

max
(√

k
ε ,

1
ε2
)
. However, that last condition is an issue: if we wanted to

set n1 ≫ n2, for instance, then we would still need

n2 ≳ max
(√

k

ε
,

1
ε2

)
,

which, given that the “vanilla” collision-based tester corresponded to
n1 = n2 ≍

√
k
ε2 , is not much of a tradeoff between n1 and n2 at all. . .

So, where did we go wrong? Recall that in order to handle the “far”
case,14 in the proof of Theorem 2.1 we had set α2 := k∥p− uk∥22 ≥ 4ε2,
and bounded

∥p∥33 − ∥p∥
4
2 ≤

α3

k3/2 + 3α2

k2

While this was enough for the “vanilla” collision-based tester, for the
bipartite one this is too loose: specifically, we are losing too much af-
ter Eq. (2.11), when bounding ∥p− u∥33 by ∥p− u∥32. We could, instead
of monotonicity of ℓp norms, write ∥p− u∥33 ≤ ∥p− u∥∞∥p− u∥22 to
get

∥p∥33 − ∥p∥
4
2 ≤ ∥p− u∥∞∥p− u∥22 + 3

k
∥p− u∥22 ≤ 2∥p∥∞

α2

k
+ 3α2

k2

where the second inequality uses the triangle inequality and ∥p∥∞ ≥ 1/k
to bound ∥p− u∥∞. Is that better? This is not immediately clear, since
∥p∥∞ could be much larger than α/

√
k. Yet, if we were lucky enough

to have ∥p∥∞ ≲ 1/k, then this bound would be perfect! For instance, if
we had ∥p∥∞ ≤ 2/k, then we could write

If only. . .Varp[Z6]
?
≤ 1
n1n2

· 1 + α2

k
+ n1 + n2

n1n2
· 7α2

k2 . (2.39)

As mentioned above, we clearly do not have that for every p such that
dTV(p,uk) ≥ ε. Still, we saw in Section 2.1.5 an argument, based on
stochastic dominance, which effectively allowed to assume this was the
case, losing only a factor 2 in the distance parameter ε. This was done
by considering, for any given p, the “averaging” p̄ defined in Lemma 2.7.

14We only have to worry about the far case, as the uniform case is already good –
the issue arises in the second term of the variance, which is zero under the uniform
distribution.
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Can we do the same here? Unfortunately, no. This stochastic domi-
nance argument relied on our statistic Z4 being a symmetric and convex
function of the sample counts N1, . . . , Nk. This is clearly not the case
here: letting N1, . . . , Nk and M1, . . . ,Mk be the counts of each domain
element in the samples from S and T , respectively, we can rewrite

Z6 = 1
n1n2

k∑
i=1

NiMi (2.40)

which is neither symmetric nor convex in the Ni,Mi’s, and so we
cannot our stochastic dominance hammer (Theorem 2.6). Sure, but
maybe we could still use some stochastic mallet? After all, we have
Z6 = S(N1M1, N2M2, . . . , NkMk) for a function S : Rk → R which
is symmetric and linear (and so a fortiori convex) in its arguments!
Unfortunately. . . still no. As we will verify in Exercise 2.7, stochastic
dominance here fails in a spectacular way. So we are left with the variance
bound which follows from what we had established, but features an
∥p∥∞ where we would like O(1/k).

Varp[Z6] ≤ 1
n1n2

· 1 + α2

k
+ n1 + n2

n1n2
· 5∥p∥∞α2

k
. (2.41)

Nonetheless we can enforce some bound on ∥p∥∞, by using an
extra number of samples n3 to detect if something looks amiss. This is
exactly what Algorithm 8 will allow us to do, ensuring that ∥p∥∞ ≲
1/n3. For technical reasons, this will require n3 ≤ k2/3; as we will see
in Exercise 2.9 we could improve this mild restriction to any n3 ≤
k(s−1)/s, for any constant s ≥ 3, at the cost of worse constants.

Require: Multiset S of n3 samples x1, . . . , xn3 ∈ X and k = |X |
1: Check if any value i ∈ [k] appears at least 3 times in S

2: if this happens and n3 ≤ k2/3 then return 0 ▷ Not uniform
3: else return 1 ▷ Uniform

Algorithm 8: ℓ∞ Tester via 3-way collision

Lemma 2.13. Given n3 i.i.d. samples from a distribution p ∈ ∆k, Algo-
rithm 8 distinguishes with probability at least 5/6 between (i) p = uk
(i.e., ∥p∥∞ = 1/k) and (ii) ∥p∥∞ > 10/n3, provided that n3 ≤ k2/3.
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Proof. Suppose that p = uk. For any s ≥ 2, the probability p(n3, k, s)
to observe an s-way collision among n3 i.i.d. samples from the uniform
distribution on k elements is bounded as

p(n3, k, s) ≤
1

ks−1

(
n3
s

)
(2.42)

(see, e.g., Suzuki et al. (2006, Theorem 2)), which for s = 3 gives the
bound p(n3, k, 3) ≤ n33

6k2 , which is at most 1/6 for n3 ≤ k2/3.
Now, assume ∥p∥∞ > 10/n3, and consider any element i ∈ [k] such

that p(i) = ∥p∥∞. The number of times N i this element i appears
among the n3 samples follows a Binomial distribution with parameters
n3 and ∥p∥∞ (and thus mean n3∥p∥∞ > 10), and so by a Chernoff
bound (Theorem A.6) we have Pr[N i < 3] < 1/6.

We will prove a more general theorem first; before showing how to
instantiate it to take advantage of Lemma 2.13:

Theorem 2.14. The bipartite collision-based tester (Algorithm 7) is a
testing algorithm for uniformity with sample complexity n(k, ε, 1/6) =
n1 + n2 and time complexity O(n), provided that n1n2 ≥ 96k/ε4 and
min(n1, n2) ≥ 480 min(k∥p∥∞,

√
2k)/ε2.

Proof. Fix any p ∈ ∆k. We also have our variance bounds from Eqs. (2.37)
and (2.41). Define our threshold

τ :=
1 + 1

2ε
2

k

as in Algorithm 7.

• In the uniform case, Euk
[Z6] = 1/k, and the probability to output

0 (and thus make a mistake) is bounded as

Pr[Z6 ≥ τ ] = Pr
[
Z6 ≥ (1 + ε2

2 )Euk
[Z6]

]
≤ 4 Varuk

[Z6]
ε4Euk

[Z6]2
≤ 4k
n1n2ε4

using Eq. (2.37); this is less than 1/6 as long as n1n2 ≥ 24k/ε4.

• In the “far” case, define α by Ep[Z6] = 1+α2

k , so that α2 ≥ ε2

but also ∥p∥∞ ≤ ∥p∥2 =
√

(1 + α2)/k. The probability to err by
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outputting 1 is

Pr
p

[Z6 < τ ] = Pr
p

[
Z6 <

1 + 1
2ε

2

1 + α2 Ep[Z6]
]

≤ Pr
p

[
Z6 <

(
1− α2

2(1 + α2)

)
Ep[Z6]

]

≤ 4(1 + α2)2

α4 · Varp[Z6]
Ep[Z6]2

≤ k

n1n2
· 4(1 + α2)

α4 + n1 + n2
n1n2

· 20k∥p∥∞
α2

≤ 8k
n1n2ε4 + 40

min(n1, n2) ·min
(
k∥p∥∞
α2 ,

√
k
√

1 + α2

α2

)

≤ 8k
n1n2ε4 + 40

min(n1, n2)ε2 min
(
k∥p∥∞,

√
2k
)

using Eq. (2.41), then n1 + n2 ≤ 2 max(n1, n2), then α2 ≥ ε2

and that the function x 7→ 1
x2

√
1 + x2 is decreasing (and ε ≤ 1).

This is less than 1/12 + 1/12 = 1/6 as long as (1) n1n2 ≥ 96k/ε4

and (2) min(n1, n2) ≥ 480 min
(
k∥p∥∞,

√
2k
)
/ε2.

The above analysis shows that both errors are less than 1/6 for any
n = n1 + n2 satisfying the two conditions from the statement; this
concludes the proof.

By choosing n1 = n2 = n
2 , we first obtain:

Corollary 2.15. The bipartite collision-based tester (Algorithm 7) is a
testing algorithm for uniformity with sample complexity n(k, ε, 1/6) =
O
(√

k/ε2
)

and time complexity O(n).

Perhaps more interesting is combining Corollary 2.16 and Lemma 2.13,
which leads to the next result:

Corollary 2.16. The bipartite collision-based tester (Algorithm 7) com-
bined with the ℓ∞ testing algorithm (Algorithm 8) form a testing
algorithm for uniformity with sample complexity n(k, ε, 1/3) = n1 +
n2 and time complexity O(n), provided that n1n2 ≥ 4800k/ε4 and
max(n1, n2) ≤ k2/3.
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Proof. Without loss of generality, suppose that n2 ≤ n1 ≤ k2/3. The
overall algorithm runs Algorithm 8 on S1, and records the output as
b1 ∈ {0, 1}; and in parallel runs Algorithm 7 on the multisets S1 and
S2, and records the output as b2 ∈ {0, 1}. The output of the algorithm
is then b1b2, i.e., the AND of the two decisions: it declares “uniform”
only if both sub-algorithms declared it.

• In the uniform case, by a union bound both algorithms return 1
with probability at least 1− (1/6 + 1/6) = 2/3, as desired.

• In the “far” case, we have two possibilities. If ∥p∥∞ > 10/n3,
then Algorithm 8 will return b1 = 0 with probability at least
5/6, and then regardless of the output of Algorithm 7 we have
b1b2 = 0 and will return 0. If ∥p∥∞ ≤ 10/n3, however, then
we have n1n2 ≥ 96k/ε4 and min(n1, n2) ≥ 480k∥p∥∞/ε2, and
so Algorithm 7 will return b2 = 0 with probability at least 5/6.
Either way, we return 0 with probability at least 5/6 > 2/3.

This concludes the proof.

2.1.8 Empirical subset weighting

To conclude, we will look at a somewhat different type of algorithms, in
that this one can inherently be seen as adaptive: it works in two stages,
where the second depends on what the outcome of the first stage was.
As in the previous section, it also allows for some tradeoff, dividing the
n total samples into two sets of size n1 and n2.

Fix an integer 1 ≤ n1 ≤ n. Take n1 i.i.d. samples from p, and
consider the set S ⊆ X (not multiset) induced by those n1 samples.
The quantity of interest will be p(S), the (unknown) probability weight
of that random set S:

p(S) =
k∑
j=1

p(j)1{N j ≥ 1} (2.43)

where, as before, N j is the number of occurrences of j among the n1
samples. One can check the expectation of this random variable is

E[p(S)] =
k∑
i=1

p(i)(1− (1− p(i))n1) (2.44)
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which should be roughly (making a few not necessarily warranted
approximations) E[p(S)] ≈ n1∥p∥22. Under the uniform distribution,
this is exactly (1 − (1 − 1/k)n1) ≈ n1/k, where the approximation is
valid for n1 ≪ k.

Great: we have a new estimator for (more or less) the ℓ2 norm. Now,
assuming things went well, at the end of this first stage we have a set S
such that p(S) is approximately either n1/k or n1∥p∥22 ≥ n1(1+Ω(ε2))/k
(we just argued that this is what happens in expectation).15 So, let’s
do a second stage! Take the next n2 := n− n1 samples, and count the
number of them which fall in S: this allows you to estimate p(S) up to
an additive n1ε

2/k, as long as

n2 ≫
k

n1ε4

(see Fact 2.2 below). This lets us retrieve the same condition n1n2 ≫
k/ε4 as in the previous section; and, similarly, for n1 = n2 = n/2 this
leads to the optimal n ≍

√
k/ε2! Only drawback: we need n1 ≪ k for

our approximations to be valid – indeed, after that, E[p(S)] cannot be
approximately n1∥p∥22 anymore: the former is at most one, the latter
at least n1/k. This is, at its core, the same issue as with the “unique
elements” algorithm from Section 2.1.3, and this imposes the condition
ε≫ 1/k1/4.

The key part of the analysis is in analyzing the random variable
p(S) from the first stage of the algorithm; the second stage, whose goal
is to estimate p(S), is much simpler to handle. To do so, as usual by
now, we begin by bounding the expectation gap

∆(p) := Ep[p(S)]− Euk
[uk(S)] (2.45)

when p is far from uniform. From Eq. (2.44), we can explicitly write,

15The tricky part, of course, will be to argue that p(S) does concentrate enough
around its expectation for this to also happen with constant probability.
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Require: Multisets S1, S2 of n1 and n2 samples x1, . . . , xn1 ∈ X ,
y1, . . . , yn2 ∈ X , parameters ε ∈ (0, 1] and k = |X |

1: Set τ ← n1ε2

64k
2: Compute S, the set of samples from S1. ▷ Can be done in
O(n1 logn1) time, and O(n1) expected (e.g., via cuckoo hashing).

3: Compute ▷ Can be done in O(n2) time.

Z7 = 1
n2

n2∑
t=1

1{yt ∈ S} .

4: if Z7 ≥ 1− (1− 1
k )n1 + 2τ then return 0 ▷ Not uniform

5: else return 1 ▷ Uniform

Algorithm 9: Empirical Subset Weighting Tester

for every p ∈ ∆k,

∆(p) =
k∑
i=1

p(i)(1− (1− p(i))n1)− (1− (1− 1/k)n1)

=
k∑
i=1

p(i)((1− 1/k)n1 − (1− p(i))n1) ,

“hiding one” by writing (1− (1− 1/k)n1) = ∑k
i=1 p(i)(1− (1− 1/k)n1).

We are in luck: the resulting expression turns out to be exactly the same
as in the expectation for Z2 (Lemma 2.2), with n1 instead of n− 1! We
can therefore reuse the analysis we had then, and immediately get:

Lemma 2.17. If n ≤ k, we have

∆(p) ≥ n1
16kdTV(p,uk)2 .

Here, we will introduce (and use) another concept we have not seen
yet, that of negative association between random variables. This is
a stronger notion than negative correlation, and is very useful when
dealing with random variables which are dependent “but in a way which
helps us” (to prove concentration):

Definition 2.3 (Negative Association). The random variables X1, . . . , Xn

are said to be negatively associated if, for all disjoint subsets I, J ⊆ [n]
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and functions f : R|I| → R, g : R|J | → R, we have

E[f((Xi)i∈I)g((Xj)j∈J)] ≤ E[f((Xi)i∈I)]E[g((Xj)j∈J)]

whenever f, g are both non-increasing or both non-decreasing.

As it turns out, the sample counts N1, . . . , Nk are negatively associ-
ated (see, e.g., (Dubhashi and Ranjan, 1998, Section 2.2)), which we
will use below.16 We will rely on this to bound the variance explicitly,
starting with the expected square:

E
[
p(S)2

]
=

k∑
i=1

k∑
j=1

p(i)p(j)E[1{N i ≥ 1}1{N j ≥ 1}]

=
k∑
i=1

p(i)2E[1{N i ≥ 1}] + 2
∑
i<j

p(i)p(j)E[1{N i ≥ 1}1{N j ≥ 1}]

≤
k∑
i=1

p(i)2E[1{N i ≥ 1}] + 2
∑
i<j

p(i)p(j)E[1{N i ≥ 1}]E[1{N j ≥ 1}]

=
k∑
i=1

p(i)2 Pr[N i ≥ 1] +
(

k∑
i=1

p(i) Pr[N i ≥ 1]
)2

−
k∑
i=1

p(i)2 Pr[N i ≥ 1]2

=
k∑
i=1

p(i)2 Pr[N i ≥ 1](1− Pr[N i ≥ 1]) + E[p(S)]2 ,

where the inequality follows from negative associativity, and we got the
third equality by completing the sum 2∑i<j xi,j = ∑

i,j xi,j −
∑
i xi,i.

That is, we just proved

Var[p(S)] ≤
k∑
i=1

p(i)2 Pr[N i ≥ 1] Pr[N i = 0] . (2.46)

By upper bounding the last factor by 1, we then get

Var[p(S)] ≤ ∥p∥∞E[p(S)] ≤ n1∥p∥2∞ (2.47)

where for the last step we used that

Ep[p(S)] =
k∑
i=1

p(i)(1− (1− p(i))n1) ≤ 1− (1− ∥p∥∞)n1 ≤ n1∥p∥∞ .

16What we will use does not require the full power of negative associativity and
could be obtained directly, but it is a good concept to know, so – why not?
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Of course, Eq. (2.47) requires a bound on ∥p∥∞, which we do not have
for the “far” case.17 Yet, by observing that the function x ∈ [0, 1] 7→
x(1− x)m is maximized at 1

m+1 (where it is at most 1
2(m+1)) we can get

Var[p(S)] ≤
k∑
i=1

p(i) Pr[N i ≥ 1] · p(i)(1− p(i))n1 ≤ E[p(S)]
2n1

. (2.48)

This allows us to prove that the first stage of the algorithm will
(with high probability) succeed, in that the random variable p(S) will
significantly differ under the uniform and “far” cases.

Lemma 2.18. For p ∈ ∆k such that dTV(p,uk) ≥ ε, we have

Pr
uk

[uk(S) ≥ Euk
[uk(S)] + τ ] ≤ 1

6 , Pr
p

[p(S) ≤ Euk
[uk(S)] + 3τ ] ≤ 1

6 ,

where τ := n1ε2

64k ; provided that k ≥ n1 ≥ 115
√
k/ε2 and ε ≥ 15/k1/4.

Proof. Let p ∈ ∆k. As usual by now, we will invoke Chebyshev’s
inequality to prove the desired bounds.

• In the uniform case,

Pr
uk

[
uk(S) ≥ Euk

[uk(S)] + n1ε
2

64k

]
≤ 4096k2 Varuk

[uk(S)]
n12ε4 ≤ 4096

n1ε4

using Eq. (2.47), which implies Varuk
[uk(S)] ≤ n1

k2 ; this is less
than 1/6 as long as18 n1 ≥ 24576/ε4.

• In the “far” case, we have by Lemma 2.17 we have ∆(p) ≥ n1ε2

16k ≥

17Unfortunately, we cannot in this case use our stochastic dominance hammer,
or even gavel, as it is not true in general that p(S) stochastically dominates q(S)
whenever p ⪰ q.

18It is worth pointing out, in case this was not apparent, that this survey does
not focus on optimizing the constants.
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ε2

16Euk
[uk(S)],

Pr
[
p(S) < Euk

[uk(S)] + 3n1ε
2

64k

]
≤ Pr

[
p(S) < Euk

[uk(S)] + 3
4∆(p)

]
= Pr

[
p(S) < Ep[p(S)]− 1

4∆(p)
]

≤ 16 Var[p(S)]
∆(p)2

≤ 128k
n12ε2 ·

Ep[p(S)]
∆(p)

≤ 2176k
n12ε4

using Eq. (2.47), then Ep[p(S)]
∆(p) = 1 + Euk

[p(S)]
∆(p) ≤ 1 + 16

ε2 ≤ 17
ε2 . This

is less than 1/6 whenever n1 ≥ 115
√
k/ε2.

Observing that our condition ε ≥ 15/k1/4 implies 115
√
k/ε2 ≥ 24576/ε4

concludes the proof of the lemma.

The second stage then boils down to using n2 samples to distinguish
between the two cases: (1) p(S) ≤ Euk

[uk(S)] + τ and (2) p(S) ≥
Euk

[uk(S)] + 3τ , assuming one of the two holds (which will if the first
stage is successful). To do so, we will require the following result, which
can be seen as a “localized” variant of Fact 2.1.19

Fact 2.2 (Bias of a coin, distinguishing).E: Prove
this! Exer-

cise 2.5.
Given i.i.d. samples from a

Bernoulli with unknown parameter α ∈ [0, 1], and parameters β, η ∈
(0, 1], distinguishing with probability 1 − δ between α ≤ β and α ≥
β(1 + η) can be done with (and requires) Θ

(
log(1/δ)
βη2

)
samples. This is

achieved by the empirical estimator.

We are now ready to establish the guarantees of our algorithm.

Theorem 2.19. The empirical subset weighting tester (Algorithm 9) is
a testing algorithm for uniformity with sample complexity n(k, ε, 1/3) =
n1 + n2 and time complexity O(n1 logn1 + n2) (expected O(n1 + n2)),
provided that n1n2 ≥ Ck/ε4, 115

√
k/ε2 ≤ n1 ≤ k, and ε ≥ 15/k1/4.

19Localized, as it depends on the “location” β we focus on, while Fact 2.1 holds
for all possible values – and is thus a worst-case result (over the unknown value α).
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Proof. Fix any p ∈ ∆k, and define

τ := n1ε
2

64k

as in Algorithm 9 and Lemma 2.18. We assume that n2 ≥ C · k
n1ε4 ,

where C > 0 is the constant hidden in the O(·) of Fact 2.2, so that we
can apply this lemma with β := Euk

[uk(S)] + τ , η := 2τ
β , and δ := 1/6.

Here, we implicitly used that Euk
[uk(S)] ≤ n1

k , to get

1
βη2 = β

4τ2 ≲
k

n1ε4 .

• In the uniform case, by Lemma 2.18 and Fact 2.2 we have that,
with probability at least (1− 1

6)2 ≥ 2/3, uk(S) ≤ Euk
[uk(S)]+τ =

β and our estimate Z7 of uk(S) detects it, so that we output 1.

• In the “far” case, similarly by Lemma 2.18 and Fact 2.2, with
probability at least (1− 1

6)2, p(S) ≥ Euk
[uk(S)] + 3τ = β(1 + η)

and our estimate Z7 of p(S) detects it, so that we output 0.

The above analysis shows that both errors are less than 1/3 for any
n = n1 + n2 such that n1n2 ≥ Ck/ε4 and k ≥ n1 ≥

⌈
115
√
k/ε2

⌉
; this

concludes the proof.

Setting n1 = n2 in the above theorem, we get as an immediate
corollary:

Corollary 2.20. The empirical subset weighting tester (Algorithm 9) is
a testing algorithm for uniformity with sample complexity n(k, ε, 1/3) =
O(
√
k/ε2) and time complexity O(n logn) (expected O(n)), provided

that ε ≥ 15/k1/4.

2.1.9 Discussion

In this section, we have covered and analyzed seven different algorithms
for uniformity testing;20 some, such as the collision-based tester and the

20There may (and surely are) other possible algorithms one could consider, of
course; yet, we hope that this chapter provided a good and representative overview
of the ideas, techniques, and tools one could use to analyze such algorithms.
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bipartite collision tester, or the unique element tester and the empirical-
distance tester, were related, and many (but not all) relied on the use
of ℓ2 distance as a proxy for total variation distance. Before concluding
this section, let us have a look at some of their differences, and specific
advantages of each of them.

• The collision-based tester, besides being a very natural idea (which
turns out to yield the optimal sample complexity!), is as a byprod-
uct an estimator of the ℓ2 norm of the distribution, i.e., its collision
probability. This could be useful by itself, if one is interested in
this quantity for its own sake. Perhaps more importantly, the use
of ℓ2 as proxy (via Cauchy–Schwarz), combined with monotonicity
of ℓp norms (ℓ2 ≤ ℓ1), implies that this tester actually provides
some amount of tolerance (robustness to model misspecification):
instead of just between p = uk and dTV(p,uk) ≥ ε, it enables one
to distinguish between dTV(p,uk) ≤ ε/(2

√
k) and dTV(p,uk) ≥ ε.

This seemingly small tolerance happens to be quite helpful in many
settings. Of course, the same comment applies to the bipartite
collision tester, but also to the random binary hashing tester
(which also relies on, and estimates, the squared ℓ2 distance).

• Both the unique elements tester and the empirical-distance tester
have low sensitivity, meaning that changing the value of a single
one of the n samples cannot change the value of the resulting
statistic (Z2 or Z4) by much: roughly, ≍ 1/n or ≍ 1/k. While the
different renormalization makes it a little tricky to compare, the
collision-based tester, for instance, has much worse sensitivity, as
changing one sample can have a much larger effect on the statistic
(since Z1 is a quadratic function of the sample counts). Having
low sensitivity, which is essentially an ℓ1 Lipschitzness guarantee,
in turn is very desirable to obtain robust algorithms (i.e., robust
to data corruption, adversarial or not), or, importantly, to obtain
differentially private algorithms (Dwork et al., 2006), since the
amount of random noise added to ensure data privacy is directly
related to this sensitivity. In particular, the unique elements tester
and the empirical-distance tester each have been used to obtain
optimal, or near-sample-optimal, differentially private uniformity
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testing algorithms (Acharya et al., 2018; Aliakbarpour et al.,
2018).

• This low sensitivity is one of the aspects which allows the empirical-
distance tester to achieve the optimal “high-probability bound,”
that is, the optimal dependence on the error probability δ. In-
deed, while our bounds for δ = 1/3, combined with the standard
amplification from Lemma 1.1, yield the upper bound

n(k, ε, δ) = O

(√
k

ε2 log 1
δ

)
(2.49)

on the sample complexity of uniformity testing for general δ ∈
(0, 1], the “right” bound is

n(k, ε, δ) = Θ
(

1
ε2

(√
k log 1

δ
+ log 1

δ

))
(2.50)

which can be much smaller for vanishing δ, e.g., δ = 1/2Ω(k).
The bound Eq. (2.50) is achieved by the empirical-distance tester,
but with a different analysis to prove concentration around the
mean: namely, instead of a Chebyshev-based (variance) bound, one
can use instead the so-called bounded differences inequality (Mc-
Diarmid’s inequality) and its “Bernstein-type variant” (bounded
variances inequality) (Dubhashi and Panconesi, 2009, Chapters 5.4
and 8) to show that the statistic Z4 concentrates very tightly. The
low sensitivity of Z4, as it happens, plays a crucial role when
applying those bounds.

• The random binary hashing testing, albeit not sample-optimal,
only requires to store a single bit of information per sample.
(Moreover, this can be generalized to ℓ bits by hashing to 2ℓ
elements instead of two, leveraging Theorem 2.12.) This can
be very valuable in memory-limited or communication-limited
settings (we will get back to this in Chapter 4), or in the case of
local differential privacy (Kasiviswanathan et al., 2011), where this
can be used to obtain a sample-optimal locally private uniformity
testing algorithm (Acharya et al., 2021a) (as optimally privatizing
one bit is much easier than a full log k-bit sample).
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• Finally, the χ2 tester. . . just works. It also nicely generalizes to
other problems (identity testing, as we will see in Section 2.2;
or even, with appropriate modifications, to “closeness testing”
(two-sample goodness-of-fit) or other related testing tasks. Among
other enjoyable properties, its asymptotic distribution (as the
number of samples n→∞) can be obtained, letting us (asymp-
totically) obtain confidence intervals. It also does provide, as the
collision-based tester, some amount of tolerance, in the so-called
χ2 divergence; while beyond the scope of this survey, this χ2-
divergence tolerance can be used as a blackbox to obtain testing
algorithms for other properties than uniformity (Acharya et al.,
2015).

2.2 Identity testing

Having developed techniques, insights, and mathematical muscle mem-
ory for the task of uniformity testing, we now turn to its natural
generalization, identity testing, where we now seek to test whether
the unknown distribution p is equal to some specific, fixed reference
distribution q – our “model” – of which we have the full, explicit de-
scription. Fortunately, many of the ideas from the previous section can
be extended or reused for this more general problem; as we will see in
the last subsection, there even exists a way to reuse the exact same
algorithms as for uniformity. But first, let us get reacquainted with a
familiar algorithm, the χ2 tester.

2.2.1 The return of χ2

We will only make a small change to our statistic Z3 from Section 2.1.4,
to replace the uniform distribution by our reference distribution q; the
analysis itself, besides a simple “trick,” will also be almost identical. We
will again work here in the Poissonized sampling model, and let

Z =
k∑
i=1

(N i − nq(i))2 −N i

nq(i) ; (2.51)
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that is, we now have q(i) instead of uk(i) = 1/k in the numerator and
denominator, and as before N i denotes the number of occurrences of
i ∈ [k] among our Poisson(n) samples.

This is where we face a technical hurdle, due to the fact that q(i)
in the denominator, while known, could be arbitrarily close to 0, which
would make the variance of Z blow up for no particularly good reason.
Fortunately, there is an easy fix: we can just replace q by the mixture

q′ := 1
2q + 1

2uk (2.52)

which will guarantee that each element has probability at least 1/(2k)
under q′. Moreover, given samples from an unknown distribution p it is
easy to generate the same number of samples from the (also unknown)
distribution p′ := 1

2p + 1
2uk. E: We will

check this
in Exer-
cise 2.12.

If p = q, then of course p′ = q′, and if
dTV(p,q) > ε then dTV(p′,q′) > ε/2, since

2dTV
(
p′,q′) =

k∑
i=1
|p′(i)− q′(i)| =

k∑
i=1

∣∣∣∣12p(i)− 1
2q(i)

∣∣∣∣ = dTV(p,q) .

That is, this transformation only costs us a constant factor in the
distance parameter. For simplicity, in what follows we will write directly
p,q instead of p′,q′, and assume throughout that mini∈[k] q(i) ≥ 1/(2k).

Since, by Poissonization, the N i’s are independent Poisson random
variables with N i ∼ Poisson(np(i)), we can once more use Claim 2.2,
leading to

E[Z] = n
k∑
i=1

(p(i)− q(i))2

q(i) = n · χ2(p || q) (2.53)

From this, we immediately get that if p = q then E[Z] = 0. Moreover,
if dTV(p,q) > ε, then the relation between χ2 divergence and total
variation distance (Lemma B.2) implies that E[Z] > 4nε2.

To compute the variance, we use independence of the N i’s and the
second part of the same Claim 2.2 to get

Var[Z] =
k∑
i=1

Var[(N i − nq(i))2 −N i]
n2q(i)2

≤ 2
k∑
i=1

p(i)2

q(i)2 + 4

√√√√ k∑
i=1

p(i)2

q(i)2E[Z] , (2.54)
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Require: Multiset of n samples x1, . . . , xn ∈ X , parameters ε ∈ (0, 1]
and explicit description of q ∈ ∆k. ▷ Assumes Poissonization

1: Independently replace, with probability 1/2, each xi by a uniformly
random element of X . ▷ Generate samples from p′ = 1

2p + 1
2uk in

time O(n log k).
2: Set τ ← 1

2nε
2 ▷ This is 2n(ε/2)2, since the “mixture trick” above

leads to a factor-2 loss in the distance parameter ε.
3: Compute

Z =
∑
j∈X

(N j − nq′(i))2 −N j

nq′(i)

where N j ←
∑n
t=1 1{xt = j} and q′(i) := q(i)+1/k

2 .
4: if Z ≥ τ then return 0 ▷ Not q
5: else return 1 ▷ Equal to q

Algorithm 10: Chi-Square Tester (for Identity)

following the exact same steps as for Eq. (2.22) in the uniformity testing
case. As before, to continue we need to bound the quantity ∑k

i=1
p(i)2

q(i)2 ;
this is where the fact that mini∈[k] q(i) ≥ 1/(2k) will be crucial. Indeed,
the first inequality is as in the uniformity testing case, the second now
relies on this fact:

k∑
i=1

p(i)2

q(i)2 ≤ 2k + 2
k∑
i=1

(p(i)− q(i))2

q(i)2

≤ 2k + 4k
k∑
i=1

(p(i)− q(i))2

q(i)

= 2k
(

1 + 2E[Z]
n

)
.

Compared to variance analysis in the uniformity testing case, we only
lose a factor 2 in the second term. Plugging this bound in Eq. (2.54),
we get

Var[Z] ≤ 4k
(

1 + 2E[Z]
n

)
+ 4
√

2k1/2E[Z] + 8k
1/2

n1/2E[Z]3/2 (2.55)

Up to some constant factors, this is the same as (2.23). The only other
difference is that, after transformation to ensure mini∈[k] q(i) ≥ 1/(2k),
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the distance has become ε/2; so we also lose a constant factor in the
expectation gap, which by Eq. (2.53) will be at least ∆ := nk · 4(ε/2)2

k =
nε2. The rest, as they say, is Chebyshev: in the p = q case, we will need

Varp[Z] ≤ 4k ≪ n2ε4 ≤ ∆2 ,

which holds whenever n≫
√
k/ε2. In the “far” case (dTV(p,q) > ε/2),

we want Varp[Z]≪ ∆(p)2 = Ep[Z]2, which by Eq. (2.55) will require

max
(
k,
k

n
Ep[Z], k1/2Ep[Z], k

1/2

n1/2Ep[Z]3/2
)
≪ Ep[Z]2 .

Using Ep[Z] ≥ nε2, we see that this also holds for n≫
√
k/ε2. By an

argument nearly identical to the proof of Theorem 2.5, we obtain:

Theorem 2.21. The χ2-based tester (Algorithm 10) is a testing algo-
rithm for identity with sample complexity n(k, ε, 1/3) = O(

√
k/ε2) and

time complexity O(n log k + k) in the Poissonized setting.

This was relatively painless, and shows that the general case of
identity testing is no harder than uniformity testing – up to constant
factors. The key insight, here, was to use this “mixture trick” (Eq. (2.52))
to replace q by a slightly modified version, q′ with some nice guarantees.
(Of course, if in practice the known q already satisfies mini q(i) ≥ 1/(2k),
this step is not necessary.)

One can interpret this trick as applying a suitable randomized
transformation to the samples (i.e., to the input distribution), which
maps the reference distribution q to something a little closer to uniform,
while somewhat preserving the pairwise distances between distributions.
That is, coming up with a pair of mappings (Φ,Ψ) with Φ: ∆k → ∆k′

and Ψ: [k] → [k′], such that (1) Φ(q) ≈ uk′ , (2) dist(Φ(p),Φ(q)) ≈
dist(p,q) for all p, and (3) Ψ(x) ∼ Φ(p) whenever x ∼ p.

Here, we chose k = k′ and Φ(p) = 1
2p + 1

2uk (and dist being the
total variation distance, for a rather liberal interpretation of ≈), which
worked for the χ2-based tester; in the next two subsections, we will see
variants of this idea, applying more generally to any tester.
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2.2.2 Reduction to (near)-uniformity testing: ℓ2 distance

The first idea is, given how convenient ℓ2 distance has proven itself as a
proxy for total variation distance when testing uniformity, to attempt to
perform identity testing in ℓ2 distance as well. This will not quite work,
unfortunately, as the ℓ2 guarantee will only translate to a good ℓ1/total
variation one when the reference distribution q is somewhat “close to
uniform” (in a specific sense: when it has small ℓ2 norm ∥q∥2). Which
is when the type of randomized mapping we just discussed will come in
handy, providing a principled way to ensure this condition holds.

A good ℓ2 tester. Our first step is thus to get a good ℓ2 testing
algorithm; for simplicity of analysis, we will throughout this section
work in the Poissonized sampling setting, and establish the following
theorem:

Theorem 2.22. Given the explicit description of a probability distribu-
tion q ∈ ∆k, parameter ε ∈ (0, 1], and Poisson(n) i.i.d. samples from
an unknown p ∈ ∆k, Algorithm 11 runs in time O(n logn + k) and
distinguishes between ∥p− q∥2 ≤ ε and ∥p− q∥2 ≥ 2ε with probability
at least 2/3 as long as n ≥ 100 max

(
∥q∥2/ε2, 2/ε

)
.

Require: Multiset of n samples x1, . . . , xn ∈ X , parameters ε ∈ (0, 1]
and explicit description of q ∈ ∆k. ▷ Assumes Poissonization

1: Set τ ← 3n2ε2

2: Compute
Z =

∑
j∈X

(
(N j − nq(j))2 −N j

)
where N j ←

∑n
t=1 1{xt = j}.

3: if Z ≥ τ then return 0 ▷ Far from q (in ℓ2)
4: else return 1 ▷ Close to q (in ℓ2)

Algorithm 11: Robust ℓ2 Tester (for Identity)

Proof. Before computing the expectation and variance of the statistic
Z from Algorithm 11, which does look a lot like a simpler version
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of Algorithms 3 and 10 (we “just” omitted the denominators!), we
will make a simple observation. Namely, that by the reverse triangle
inequality, if ∥p∥2 ≥ 2∥q∥2 then ∥p− q∥2 ≥

1
2∥p∥2.

Turning to the analysis of the moments of Z, we can simply re-
call Claim 2.2 and capitalize on all our previous hard work:

Ep[Z] = n2∥p− q∥22 (2.56)

and

Varp[Z] =
k∑
i=1

(
2n2p(i)2 + 4n3p(i)(p(i)− q(i))2

)
≤ 2n2∥p∥22 + 4n3∥p∥2∥p− q∥22 (2.57)

where the second inequality just uses p(i) ≤ ∥p∥∞ ≤ ∥p∥2. We are now
ready to conclude:

• If ∥p− q∥2 ≤ ε, then Ep[Z] ≤ n2ε2 and by Markov’s inequality

Pr
[
Z ≥ 3n2ε2

]
≤ Ep[Z]

3n2ε2 ≤
1
3

(we did not even need Chebyshev!).

• If ∥p− q∥2 ≥ 2ε, then Ep[Z] ≥ 4n2ε2 and by Chebyshev’s

Pr
[
Z < 3n2ε2

]
≤ 16 Varp[Z]

Ep[Z]2
≤ 32∥p∥22
n2∥p− q∥42

+ 64∥p∥2
n∥p− q∥22

(this time we did). This is where our earlier observation will come in
handy: indeed, it guarantees that ∥p∥2 ≤ 2 max(∥q∥2, ∥p− q∥2),
and so

Pr
[
Z < 3n2ε2

]
≤ 64 max

(
∥q∥22

16n2ε4 ,
1

4n2ε2

)
+ 128 max

(∥q∥2
4nε2 ,

1
2nε

)

= max
(

4∥q∥22
n2ε4 + 32∥q∥2

nε2 ,
16
n2ε2 + 64

nε

)

which can be seen to be at most 1/3 for n ≥ max
(
100∥q∥2/ε2, 200/ε

)
.

This concludes the proof of the theorem.
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To see how useful Theorem 2.22 is, let us apply it to uniformity
testing to rederive the optimal sample complexity. After all, as mentioned
above, in the particular case q = uk the statistic Z of Theorem 2.22
is simply a rescaling of Z3 from Algorithm 3, and its analysis is eerily
similar (relying on Claim 2.2) – so it should not be surprising that the
guarantees they provide match.

Applying Theorem 2.22 with ∥q∥2 = 1/
√
k and distance parameter

ε′ := ε/
√
k (from the relation TV/ℓ2, Eq. (2.1)), we can distinguish

between ∥p− uk∥2 ≤ ε/
√
k and ∥p− uk∥2 ≥ 2ε/

√
k with

n ≍ max
(

1/
√
k

ε′2 ,
1
ε′

)
≍
√
k

ε2

samples, as promised. This then implies a uniformity testing algorithm
with a small extra guarantee in the “close” case: distinguishing between
∥p− uk∥2 ≤ ε/

√
k and dTV(p,uk) ≥ ε. More generally, Theorem 2.22

will allow us to obtain this type of sample complexity for identity testing
as long as the reference q has ℓ2 norm ∥q∥2 ≲ 1/

√
k.

From arbitrary q to small ℓ2 norm. Since the theorem we just
established (Theorem 2.22) is particularly well suited to reference distri-
butions q which are “close to uniform” in the sense of having very small
ℓ2 norm, it would be very convenient if we could assume this “without
loss of generality” of every reference q. Of course, this is not true – but,
as we will see, there is a neat transformation Φ which will essentially
give us this, at nearly no cost.

Namely, define, for every i ∈ [k], the value ki := ⌊kq(i)⌋+ 1; and,
accordingly,

k′ :=
k∑
i=1

ki ≤
k∑
i=1

(kq(i) + 1) = 2k . (2.58)

The tranformation Φq will map a distribution p ∈ ∆k to a distribution
Φq(p) ∈ ∆k′ which, for each i ∈ [k], has ki ≥ 1 elements with probability
p(i)/ki:

Φq(p)(j) =
k∑
i=1

p(i)
ki

1{j ∈ Si}, j ∈ [k′] (2.59)

where Si := {1 +∑i−1
ℓ=1 kℓ, . . . ,

∑i
ℓ=1 kℓ} for all i ∈ [k].
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Example 2.1. If k = 2 and q(1) = 1/3,q(2) = 2/3, then k1 = 1, k2 = 2,
k′ = 3, and for any p ∈ ∆2 we have Φq(p) ∈ ∆3 with

Φq(p)(1) = p(1), Φq(p)(2) = Φq(p)(3) = p(2)
2 ,

and S1 = {1}, S2 = {2, 3}.

One advantage of the transformation Φq described in Eq. (2.59) is
its efficiency: knowing q, one can compute all ki in time linear in k.
Moreover, given samples from any (unknown) distribution p ∈ ∆k, one
can easily simulate samples from Φq(p) with the following randomized
mapping Ψq : [k]→ [k′]:

Ψq: Given i ∈ [k], return one of the ki elements from Si uniformly at
random.

One can check that, if x ∼ p, then Ψq(x) ∼ Φq(p). Thus, so far we have
defined a pair of mappings (Φq,Ψq), which depend on our reference
distribution q and allow us to go from distributions and samples over
[k] to distributions and samples over a slightly larger domain [k′]. What
did we gain in doing so?

The next two lemmas will provide the answer, by showing that
(1) the transformation Φq preserves distances between distributions, and
that (2) after applying Φq to our reference distribution q, the “new”
reference distribution Φq(q) has small ℓ2 norm. Which is great, as
these two properties are exactly what we need to apply the ℓ2 tester
from Theorem 2.22! Specifically, we have the following guarantees:

Lemma 2.23 (Distances are preserved). For any p1,p2 ∈ ∆k, we have

dTV(Φq(p1),Φq(p2)) = dTV(p1,p2) .
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Proof. Unrolling the definitions, since [k′] = ⨿ki=1Si we have

2dTV(Φq(p1),Φq(p2)) =
k∑
i=1

∑
j∈Si

|Φq(p1)(j)− Φq(p2)(j)|

=
k∑
i=1

∑
j∈Si

|p1(i)− p2(i)|
ki

=
k∑
i=1
|p1(i)− p2(i)|

= 2dTV(p1,p2) ,

where we used the fact that ki = |Si| for all i ∈ [k].

Lemma 2.24 (Φq(q) is nice). We have

∥Φq(q)∥2 ≤
√

2√
k′ .

Proof. This is again a game of unrolling:

∥Φq(q)∥22 =
k∑
i=1

∑
j∈Si

Φq(q)(j)2 =
k∑
i=1

∑
j∈Si

q(i)2

k2
i

=
k∑
i=1

q(i)2

ki
≤

k∑
i=1

q(i)
k

= 1
k

where the inequality follows from ki = 1+⌊kq(i)⌋ ≥ kq(i). To conclude,
recall from Eq. (2.58) that k′ ≤ 2k.

With these two lemmas, we can combine the transformation (Φq,Ψq)
with the ℓ2 testing algorithm from the previous subsection to get an
efficient identity testing algorithm in total variation distance:

Theorem 2.25. The ℓ2-reduction-based tester (Algorithm 12) is a
(time-efficient) testing algorithm for identity with sample complexity
n(k, ε, 1/3) = O(

√
k/ε2) in the Poissonized setting.21

Proof. The proof follows quite readily from what we have done already:
given N ∼ Poisson(n) i.i.d. samples from some p, we get, after passing

21We do not state its exact time complexity here, as this would involve annoying
considerations on how to efficiently represent Φq, Ψq, and the complexity of sampling
from the randomized function Ψq.
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Require: Multiset of n samples x1, . . . , xn ∈ X , parameters ε ∈ (0, 1]
and explicit description of q ∈ ∆k. ▷ Assumes Poissonization

1: Compute the values k1, . . . , kk, k′, the corresponding disjoint sets
S1, . . . , Sk, and the distribution Φq(q), as in Eq. (2.59).

2: Convert samples x1, . . . , xn ∈ X to samples x′
1, . . . , x

′
n ∈ X ′ := [k′],

where x′
i ← Ψq(xi). ▷ Requires randomness: Ψq is randomized.

3: Set ε′ := ε/
√
k′, and invoke the robust ℓ2 tester (Algorithm 11) on

x′
1, . . . , x

′
n, ε′, and reference Φq(q).

4: if Algorithm 11 returns 0 then return 0 ▷ Not q
5: else return 1 ▷ Equal to q

Algorithm 12: Identity Tester via ℓ2 Reduction

them through Ψq, a set of N i.i.d. samples from Ψq(p). Of course, if
p = q then Φq(p) = Φq(q); but also, by Lemma 2.23, if dTV(p,q) > ε

then dTV(Φq(p),Φq(q)) > ε, and so

∥Φq(p)− Φq(q)∥2 > 2ε/
√
k′ = 2ε′ .

By Theorem 2.22, Algorithm 11 will then distinguish between our two
cases ∥Φq(p)− Φq(q)∥2 = 0 ≤ ε′ and ∥Φq(p)− Φq(q)∥2 ≥ 2ε′ with
probability at least 2/3, as long as

n ≥ 100 max
(
∥Φq(q)∥2/ε

′2, 2/ε′
)

= 100 max
(
k′∥Φq(q)∥2/ε

2,
√
k′/ε

)
.

Since k′∥Φq(q)∥2 ≤
√

2k′ by Lemma 2.24 and k′ ≤ 2k by Eq. (2.58),
the right-hand-side is at most 200

√
k/ε2, and so having n ≥ 200

√
k/ε2

suffices.

To conclude this subsection, it is worth highlighting the connection
between this ℓ2 reduction and the χ2-based tester from Theorem 2.21.
Indeed, while we focused on the fact that the tranformation Φq preserved
the total variation distance between distributions (Lemma 2.23), one
can also see it as converting χ2 divergences (to q) to ℓ2 distances:
χ2(p || q) ≈ k∥Φq(p)− Φq(q)∥22. E: See Exer-

cise 2.14.Thus, in this sense, Algorithm 10 can
be seen as an “unrolled” version of Algorithm 12, where the mapping
Φq is explicitly expanded into Algorithm 11, converting ℓ2 testing of
Φq(p),Φq(q) into χ2 testing of p,q.
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2.2.3 Reduction to uniformity testing

So far, we have seen in Section 2.2.1 a transformation which brought the
reference distribution q (and, actually, all distributions) a little closer
to uniform, while preserving the total variation distances up to a factor
2 (Eq. (2.52)); and, in Section 2.2.2, a different transformation which
brought down the ℓ2 norm of the reference q to “near-uniform levels”
while exactly preserving the total variation distances. In this section, we
will describe a third mapping, which transforms the reference q to the
actual uniform distribution (on a slightly larger domain), while nearly
preserving total variation distances.

The advantage of this particular transformation is that it provides
an actual reduction, in the formal computer science sense, from identity
testing to uniformity testing. After applying this mapping, one can use
any uniformity testing algorithm (e.g., any of those we saw in Section 2.1)
as a blackbox, without any modification, to perform the testing. As an
algorithm designer, or (in the case of the author of this survey) a
somewhat lazy person, this is particularly satisfying.

This transformation will be done in three steps:22 (1) a mapping
(Φ(1)

q ,Ψ(1)
q ) which transforms any “well-behaved” reference distribution

q over [k + 1] into the uniform distribution over some larger domain
[k′], and exactly preserves total variation distances; (2) a mapping
(Φ(2)

q ,Ψ(2)
q ), which transforms any “not-too-badly behaved” reference q

over [k] into a “well-behaved” (in the sense of (1)) distribution over [k+1],
roughly preserving the distances; and, finally, (3) a simple mapping
(Φ(3)

q ,Ψ(3)
q ) which transforms an arbitrary reference distribution q over

[k] into a “not-too-badly behaved” (in the sense of (2)) distribution over
the same domain, also roughly preserving the distances. Combining the
three will give us the overall mappings

Φq := Φ(1)
q ◦ Φ(2)

q ◦ Φ(3)
q : ∆k → ∆k → ∆k+1 → ∆k′

Ψq := Ψ(1)
q ◦Ψ(2)

q ◦Ψ(3)
q : [k]→ [k]→ [k + 1]→ [k′]

(2.60)

22Recall that Φq denotes a mapping between probability distributions, while Ψq
is the corresponding (randomized) mapping between samples: for any distribution
p, applying Ψq on a sample x ∼ p yields a sample Ψq(x) distributed according to
Φq(p). Importantly, computing Ψq(x) only requires knowledge of q, and not of p.
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such that Φq(q) = uk′ , and dTV(Φq(p1),Φq(p2)) ≈ dTV(p1,p2) for all
p1,p2 ∈ ∆k. Moreover, we will also have k′ ≍ k: the domain size does
not increase by more than a constant factor.

From well-behaved to uniform. In Section 2.2.2, the main idea was
to associate each element i ∈ [k] with a set of ki = 1 + ⌊kq(i)⌋ elements
Si, so that upon sampling i we would return an element of Si uniformly
at random. This reduction has almost all properties we wanted, except
that it did not map q to the uniform distribution on [k′] = ⨿iSi: only
to something with small ℓ2 norm. The reason for this boils down to our
choice of ki, and, more specifically looking at Eq. (2.59), to the sad fact
that

q(i)
1 + ⌊kq(i)⌋ ̸=

1
k

but instead the LHS is some quantity which depends on i. The deeper
reason for this being that kq(i) is not in general a positive integer
(why would it be?), as otherwise we would just set ki := kq(i) instead,
and end up with q(i)/ki = 1/k for all i. But we can dream, and this
motivates the following definition of “well-behaved” distribution q:

Definition 2.4 (Grained distribution). Given a parameter γ > 0, we say
that a probability distribution q ∈ ∆k is γ-grained if every probability
is a positive multiple of γ, that is, if q(i) ∈ γN for every i ∈ [k].

Now, suppose our reference distribution q over [k]23 is (1/k′)-grained,
for some suitable integer k′ ≥ k (we will take k′ = 4k or so). Then, we
can, for every i ∈ [k], set

ki := k′q(i) ∈ N (2.61)

and then define accordingly the disjoint sets S1, . . . , Sk and the mappings
Φ(1)

q ,Ψ(1)
q as in Section 2.2.2, with this different choice of ki’s:

Φ(1)
q (p)(j) =

k∑
i=1

p(i)
ki

1{j ∈ Si} = 1
k′

k∑
i=1

p(i)
q(i)1{j ∈ Si}, j ∈ [k′]

(2.62)
23As discussed above, we will later apply this to a reference distribution over

[k + 1]; but for ease of notation here we keep k as the domain size parameter.
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(note that k′ = ∑k
i=1 k

′q(i) = ∑k
i=1 ki). We directly have the analogue

of Lemma 2.23, with the same proof: for any p1,p2 ∈ ∆k,

dTV

(
Φ(1)

q (p1),Φ(1)
q (p2)

)
= dTV(p1,p2) . (2.63)

(The interested reader can also verify that the χ2 divergences to q
are now exactly mapped to ℓ2 distances, not just approximately as
in Exercise 2.14).E: Check it! However, we now have a much stronger version
of Lemma 2.26: Φq(q) is not just “nice,” it is the uniform distribution!

Lemma 2.26 (Φq(q) is uniform). We have Φq(q) = uk′ (and, in partic-
ular, ∥Φq(q)∥2 = 1/

√
k′).

This follows readily from Eq. (2.62), which implies that Φ(1)
q (q)(j) = 1/k′

for all j ∈ [k′]. This completes the first step of our reduction; in the next
two, we will see how to go from an arbitrary reference distribution q to
one which satisfies our very strong assumptions – that is, one which is
(1/k′)-grained for some reasonable parameter k′.

From not-too-badly behaved to well-behaved. Let us assume
we have a reference distribution q ∈ ∆k, and we want to “convert” it to
a (1/k′)-grained distribution. A very natural idea is to simply shave off
the extra probability mass from each point, to make each probability
be a multiple of 1/k′; and then to somehow move all that remaining
probability mass on a single new element, say k + 1. That is, for every
i ∈ [k], we go from q(i) to ⌊

k′q(i)
⌋

k′

and put probability 1 −∑k
i=1

⌊
k′q(i)

⌋
/k′ (which is also a multiple of

1/k′) on k + 1. Rewriting the above ⌊k′q(i)⌋
k′q(i) · q(i), this leads to defining

Φ(2)
q ∈ ∆k+1 as

Φ(2)
q (p)(j) :=


⌊k′q(j)⌋
k′q(j) · p(j) j ∈ [k]

1−∑k
i=1

⌊k′q(i)⌋
k′q(i) p(i) j = k + 1

(2.64)

for p ∈ ∆k. This almost works: the issue is that some of the q(j)’s
could be arbitrarily small, and for those Φ(2)

q (q)(j) = 0: this violates
the requirement that a grained distribution only takes positive values
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(no 0), and also could lead to some other issues about distances not
being well preserved: for instance, one could have some distributions
p1,p2 such that dTV

(
Φ(2)

q (p1),Φ(2)
q (p2)

)
= 0, yet dTV(p1,p2) = 1! E: Can you

see why?
This will not happen, fortunately, if our reference distribution q is

not too badly behaved: say, if it puts probability mass at least 1/(2k)
on every i ∈ [k]. Then, as long as k′ ≥ 4k, we will have k′q(i) ≥ 2 for
all i, and so

min
i∈[k]

⌊
k′q(i)

⌋
k′q(i) ≥

1
2 .

This will be enough to approximately preserve total variation distances:
since then, for any two p1,p2 ∈ ∆k, we will have

dTV

(
Φ(2)

q (p1),Φ(2)
q (p2)

)
= 1

2

k+1∑
i=1

∣∣∣Φ(2)
q (p1)(i)− Φ(2)

q (p2)(i)
∣∣∣

≥ 1
2

k∑
i=1

∣∣∣Φ(2)
q (p1)(i)− Φ(2)

q (p2)(i)
∣∣∣

= 1
2

k∑
i=1

⌊
k′q(i)

⌋
k′q(i) |p1(i)− p2(i)| (Eq. (2.64))

≥ 1
4

k∑
i=1
|p1(i)− p2(i)| (good behavior)

= 1
2dTV(p1,p2) (2.65)

(Of course, as usual, dTV

(
Φ(2)

q (p1),Φ(2)
q (p2)

)
≤ dTV(p1,p2) by the

data processing inequality (Fact 1.1)). So, under this “not-too-badly
behaved” assumption on the reference distribution q and for k′ ≥ 4k,
our transformation Φ(2)

q from Eq. (2.64) (1) maps q to an (1/k′)-grained
distribution Φ(2)

q (q) over [k+1], and (2) preserves total variation distance
between distributions up to a factor 2.

To conclude, it only remains to point out that Ψ(2)
q can be easily

implemented as follows:
Ψ(2)

q : Given i ∈ [k], return i with probability ⌊k′q(j)⌋
k′q(j) and k+1 otherwise.

The last step is thus to show how to go from a completely arbitrary
reference distribution q to a “not-too-badly behaved” one. Fortunately,
this last step will not be too hard: we are almost there!
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From arbitrary to not-too-badly behaved. This last mapping
is the simplest: recall that its goal is to ensure that the reference
distribution q puts at least probability 1/(2k) on each element of
the domain, while still roughly preserving the total variation distance
between distributions. But we have seen this one already: this is just
the “mixture trick” of Eq. (2.52), where the mappings are actually
independent of q:

Φ(3)
q (p) = 1

2p + 1
2uk

and Ψ(3)
q is just the randomized function which returns a uniformly

random value with probability 1/2:

Ψ(3)
q : Given i ∈ [k], return i with probability 1

2 and a uniformly random
element of [k] otherwise.

We then have, as in Section 2.2.1, that dTV

(
Φ(3)

q (p1),Φ(3)
q (p2)

)
≥

1
2dTV(p1,p2) for all p1,p2, and that mini Φ(3)

q (q)(i) ≥ 1/(2k).

Putting it together. Combining the 3 mappings described and
analyzed above for k′ := 4k, we get the following:

Theorem 2.27. Given an arbitrary reference distribution q ∈ ∆k, the
pair (Φq,Ψq) defined in Eq. (2.60) maps distributions and samples over
[k] to distributions and samples over [4k], and satisfies (1) Φq(q) = u4k;
(2) for every p1,p2 ∈ ∆k,

dTV(Φq(p1),Φq(p2)) ≥ 1
4dTV(p1,p2) .

As a direct consequence, we get the following general theorem:

Theorem 2.28. The uniformity-reduction-based tester (Algorithm 13)
is a testing algorithm for identity with sample complexity n(k, ε, 1/3) =
nU (4k, ε/4, 1/3), where nU denotes the sample complexity of the chosen
uniformity testing algorithm. In particular, by choosing any optimal
uniformity testing algorithm, one obtains n(k, ε, 1/3) = O(

√
k/ε2).

To close this subsection, let us discuss some aspects of this reduction.
The first is its generality: since the reduction only requires knowledge
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Require: Multiset of n samples x1, . . . , xn ∈ X , parameters ε ∈ (0, 1]
and explicit description of q ∈ ∆k. ▷ Assumes Poissonization if the
uniformity testing algorithm used in Line 3 does.

1: Compute the mappings Ψq as in Eq. (2.60), for k′ ← 4k
2: Convert samples x1, . . . , xn ∈ X to samples x′

1, . . . , x
′
n ∈ X ′ := [k′],

where x′
i ← Ψq(xi). ▷ Requires randomness: Ψq is randomized.

3: Invoke any uniformity tester over [k′] on x′
1, . . . , x

′
n, with distance

parameter ε/4.
4: if the uniformity tester returns 0 then return 0 ▷ Not q
5: else return 1 ▷ Equal to q

Algorithm 13: Identity Tester via Uniformity Reduction

of the reference distribution q and defers the testing to any uniformity
testing of one’s choosing, one can apply it in other settings than the
“standard” one where samples are fully available: for instance, in some
of the constrained measurements settings discussed in Chapter 4. This
means that in these cases as well, one can focus on getting a good
uniformity testing algorithm, and then see it extended immediately to
identity testing “for free”!

The second is its cost. The above argument transforms the iden-
tity testing question with parameters (k, ε) to uniformity testing with
parameters (4k, ε/4). Since the cost of the latter scales as

√
k/ε2, the

“blowup” in sample complexity between uniformity and identity testing
is
√

4/(1/4)2 = 32. This might seem a lot! Yet, we did not make here
any attempt at optimizing the parameters: one can check (see Exer-
cise 2.15) that choosing better parameters reduces this blowup to “only”
a factor ≈ 12.2.

2.2.4 Bonus: bucketing

We would be remiss to end this section without at least mentioning
a simple, yet powerful technique which, too, almost reduces identity
to uniformity testing. This technique, bucketing, was one of the first
proposed; and while it does not quite lead to the optimal sample
complexity, it almost gets us there. We hereafter provide only an outline
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of the main ideas and argument; the reader is encouraged to fill in the
details.

Given our reference distribution q ∈ ∆k and a parameter ε ∈ (0, 1],
the starting point is to partition the domain into a logarithmic number
of “buckets” B1 . . . , BL ⊆ [k] such that q is roughly constant (up to a
multiplicative factor) on each Bj :

Bj :=
{
i ∈ [k] : 1

2j < q(i) ≤ 1
2j−1

}
, j ∈ [L] (2.66)

where L := log 2k
ε . We also define the “leftover bucket”

B0 :=
{
i ∈ [k] : q(i) ≤ 1

2L
}

which by our choice of L only contains elements with probability at
most ε/(2k) under q, and so q(B0) ≤ ε/2. Thus, this leftover bucket
will not contribute too much to the distance as long as p(B0) ≤ 3ε/4
as well, which can be checked separately with O(1/ε) samples from p
(cf. Fact 2.2). We can therfore effectively ignore it in the rest of the
analysis.

One nice property of this bucketing is that, for every j ∈ [L], we
have

|Bj |
2j ≤ q(Bj) =

∑
i∈Bj

q(i) ≤ |Bj |2j−1 . (2.67)

and |Bj | < 2j . In particular, denoting by qj the conditional distribution
of q on Bj , it is a simple matter to check that

∥qj∥22 =
∑
i∈Bj

q(i)2

q(Bj)2 ≤
4
|Bj |2

. (2.68)

So, great! Each of the conditional distributions qj has very small ℓ2 norm,
and we should be able to use the ℓ2 testing algorithm of Theorem 2.22.
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Moreover, for any p ∈ ∆k, we have

2dTV(p,q) =
L∑
j=0

∑
i∈Bj

|p(i)− q(j)|

≤
L∑
j=0

∑
i∈Bj

q(Bj)
(∣∣∣∣∣ p(i)

q(Bj)
− p(i)

p(Bj)

∣∣∣∣∣+
∣∣∣∣∣ p(i)
p(Bj)

− q(i)
q(Bj)

∣∣∣∣∣
)

=
L∑
j=0

∑
i∈Bj

p(i)
∣∣∣∣∣q(Bj)
p(Bj)

− 1
∣∣∣∣∣+

L∑
j=0

q(Bj)
∑
i∈Bj

|pj(i)− qj(i)|

=
L∑
j=0
|p(Bj)− q(Bj)|+ 2

L∑
j=0

q(Bj)dTV(pj ,qj) ,

where pj is as before the conditional distribution of p on Bj . Letting
Φ̄q(p), Φ̄q(q) denote the “flattened” distributions on [L] induced by
p,q, what this does is relating the total variation distance between
p and q to the weighted distance between conditionals and distance
between “flattenings:”

dTV(p,q) ≤ dTV

(
Φ̄q(p), Φ̄q(q)

)
+

L∑
j=0

q(Bj)dTV(pj ,qj) . (2.69)

What does it tell us? Define H(q) := { j ∈ [L] : q(Bj) ≥ ε/(4L) }. On
the one hand, if p = q then dTV

(
Φ̄q(p), Φ̄q(q)

)
= 0, and dTV(pj ,qj) =

0 for all j ∈ [L]. On the other hand, if dTV(p,q) > ε then
ε

4 ≤ dTV

(
Φ̄q(p), Φ̄q(q)

)
+

∑
j∈H(q)

q(Bj)dTV(pj ,qj) . (2.70)

where we used that q(B0) ≤ ε/2 and ∑j /∈H(q) q(Bj) < L ·ε/(4L) = ε/4.
So if p is ε-far from q, then one of the two terms of the RHS must
be at least ε/8; even more, in the latter case this implies that at
least one of the |H(q)| terms of the sum E: Can you

see why?dTV(pj ,qj) must be at least
εj := ε/(8Lq(Bj))! If p = q, however, all |H(q)|+ 1 terms are 0.
So this leads to the following natural testing idea, which we will refer
to as the “bucketing-based tester”:

• test dTV

(
Φ̄q(p), Φ̄q(q)

)
= 0 vs. dTV

(
Φ̄q(p), Φ̄q(q)

)
> ε/8: Now,

this is itself another identity testing task, so it seems like we
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are back to square one! But not quite: since the domain of the
distributions is only logarithmic, we can afford to do this with
the baseline approach (Lemma 1.2) by learning the distribution
Φ̄q(p). This only costs us O(L/ε2) = O(log(k/ε)/ε2)) samples.

• test, for every j ∈ H(q), dTV(pj ,qj) = 0 vs. dTV(pj ,qj) > εj :
another identity testing task, but now where the reference qj
has small ℓ2 norm (by Eq. (2.68)). Of course, to do this, we
need to get enough samples from pj , i.e., enough samples from p
must fall in each Bj . What is “enough”? Since ∥qj∥2 ≍ 1/

√
Bj ,

using Theorem 2.22 as in the proof of Theorem 2.25 we obtain
that

max
(
|Bj |∥qj∥2

ε2
j

,
1
εj

)
≍

√
|Bj |
ε2
j

≍ |Bj |
5/2L2

ε222j

samples (up to constants) are enough (where we relied on Eq. (2.67)).
Moreover, since we restrict ourselves to j ∈ H(q), if p = q we
will get on expectation at least

nq(Bj) ≥
n|Bj |

2j

and, since we restrict ourselves to j ∈ H(q) where nq(Bj) ≥
n/(4L), when p = q the actual number of samples observed in
Bj will be at least half of this with overwhelming probabilityE: Check it! by
a Chernoff bound. If we do not get that many samples for some j,
then we immediately reject: this is sufficient evidence that p ̸= q.
So, based on the above, all we need for this to work is to have

n|Bj |
2j ≫ |Bj |

5/2L2

ε222j ,

that is,

n≫ |Bj |
3/2L2

ε22j .

Recalling first that |Bj | < 2j and then that |Bj | ≤ k for all j ∈ [L],
the RHS is at most

√
kL2/ε2 = Õ

(√
k/ε2

)
, as desired.

Some final bookkeeping: we lose an extra factor logL = log log(k/ε) for
a union bound over all L+ 1 tests performed, by actually running each
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of them with error probability δ := 1/(3(L+ 1)). Overall, modulo to
the missing details “left to the reader,” E: That’s

you!we established the following:

Theorem 2.29. The bucketing-based tester is a testing algorithm for
identity with sample complexity n(k, ε, 1/3) = Õ(

√
k/ε2).

2.2.5 Discussion

This concludes this section on identity testing: to summarize, we saw 4
different approaches. The first, in Section 2.2.1, defines and analyzes
directly a χ2-type test statistic, which generalizes the one we had in the
case of uniformity testing (Section 2.1.4). The second , in Section 2.2.2,
takes a different route, by first obtaining a simple “ℓ2 tester” (which
implies, by the usual ℓ2/ℓ1 relation, a total variation one) which works
well whenever the distribution q has small ℓ2 norm; and then providing
a reduction to this case, via a randomized transformation of both the
input distribution q and the samples (from the unknown p). The third,
which we covered in Section 2.2.3, goes even further, and only provides
a reduction via a sequence of such ranodmized transformations: showing
that one can leverage any uniformity testing algorithm as a blackbox
to solve the more general identity testing problem. As for the fourth,
it relies on partitioning the domain into a small number of buckets,
on each of which the reference distribution is not uniform – but close
enough.

All four approaches have their pros and cons: the first might be more
efficient in practice, while the second can generalize to other problems
than identity testing (namely, any testing problem where bringing down
the ℓ2 norm of some probability distribution helps). The third, besides
being intellectually satisfying, naturally extends to other settings such
as the “constrained measurements” ones discussed in Chapter 4. Finally,
the fourth, albeit not optimal, not only introduces the very useful
bucketing technique, but is often “good enough” to get nearly optimal
results. Of course, more broadly, we may be tempted to say that the
more techniques at our disposal, the better; and that four is greater
than one.
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2.2.6 Some open questions

We now list three open problems, in increasing degree of generality
and vagueness. We encourage the reader to think about them, and
(hopefully!) solve them.

Open Question 2.1. The analysis of the bipartite collision tester, lead-
ing to Theorem 2.14, leads to the requirement that min(n1, n2) =
Ω
(
min(k∥p∥∞,

√
k)/ε2

)
. It would be interesting to remove or relax this

requirement, or alternatively show that it is necessary. In the latter
case, this would lead to a larger range of parameters for uniformity
testing in the streaming (memory-limited) setting, based on the work
of Diakonikolas et al. (2019a).

Open Question 2.2. As described in Chapter 1, in distribution testing
we typically ask for the same Type I and Type II errors, with a single
parameter δ (set to 1/3 in most of this chapter, as justified in that first
chapter). Pinpointing the right dependence on the two types of errors
when we allow them to be fixed independently (i.e., δ0, δ1) would be
interesting, and lead to greater flexibility as well as possible savings in
some applications, or when taking a union bound over many tests.

Open Question 2.3. One underlying and recurring assumption is that
the samples we observe are i.i.d. However, the assumption of indepen-
dence is not always justified, and understanding what type of depen-
dencies can be allowed – and what tests are robust to mild “failures of
independence” – is an interesting direction. As a first step, one could
start by characterizing the minimum requirements for the tests covered
in this chapter: can some of them still work with pairwise independence?
t-wise independence, for some small t?

2.3 Historical notes

From the computer science perspective, distribution testing begun
with the influential work of Goldreich et al. (1998), who define it
as a variant of the general paradigm of property testing. Goldreich
and Ron (2000) then implicitly relied on uniformity testing (or, more
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specifically, uniformity testing with respect to ℓ2 distance) to test
whether the endpoints of short random walks of a graph were uniformly
distributed. To do so, they introduced and analyzed the collision-based
tester, although their analysis did not lead to the optimal sample
complexity, but instead to a quartic dependence on ε. A systematic study
of distribution testing was then initiated in Batu et al. (2000), focusing
on closeness (two-sample) testing; identity testing was first considered
in Batu et al. (2001). These papers, and many which followed, introduced
several important and versatile algorithmic ideas, such as the bucketing
technique from Section 2.2.4, and reductions between distribution testing
questions. However, it is only with the work of Paninski (2008) that the
tight bound of Θ

(√
k/ε2

)
for uniformity testing was established through

both an information-theoretic lower bound and a matching upper bound
via the unique-elements tester we covered in Section 2.1.3.24 Interestingly,
the optimality of first uniformity tester proposed, the collision-based
tester of Goldreich and Ron (2000), was only established nearly two
decades later, by Diakonikolas et al. (2019b).

The right dependence on the error probability δ was shown to
be

√
log(1/δ) (cf. Eq. (2.50)), instead of the “obvious” logarithmic

dependence, by Huang and Meyn (2013) (for a restricted range of
parameters) and Diakonikolas et al. (2018) (for the general case). The
latter established this result by analyzing the empirical-distance tester
(Section 2.1.5), showing as a byproduct that it did, contrary to the
common belief, not only work, but in fact achieve the optimal sample
complexity.

The bipartite collision tester (Section 2.1.7) was proposed by Di-
akonikolas et al. (2019a) in the context of uniformity testing in the
so-called streaming setting (as it allows to trade the memory required
to store a small set of samples for the size of the second set of samples,
which arrive one by one as a “stream”). The empirical-subset-weighing
tester of Section 2.1.8 can be found in Acharya et al. (2022), where it was
developed to establish a separation between adaptive and non-adaptive
testing algorithms under some type of measurement constraints (where

24With some caveats: the upper bound is restricted to the regime ε ≳ 1/k1/4, and
its original analysis had a flaw, discussed in p. 98.
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the algorithms only have partial access to the samples; a setting we will
discuss at length in Chapter 4). Finally, the binary hashing technique
of Section 2.1.6 is due to Acharya et al. (2020d), and the general form
of the domain compression lemma (Theorem 2.12) as well as some of its
generalizations can be found in Acharya et al. (2020d), Acharya et al.
(2020a), and Amin et al. (2020).

The optimal bound for identity testing was then established sepa-
rately by Chan et al. (2014) (where it is implicit, from their result on
ℓ2 testing), (Acharya et al., 2015), which analyzes the χ2-based tester
of Section 2.2.1 (as a key routine to obtain a flurry of testing results,
for various properties), and Valiant and Valiant (2017), which we will
discuss in more detail in a moment. The ℓ2-based reduction for identity
testing covered in Section 2.2.2 is due to Diakonikolas and Kane (2016),
where it is used as the main building block for a general testing frame-
work. The identity-to-uniformity reduction detailed in Section 2.2.2
was then obtained by Goldreich (2016). We slightly departed from the
original presentation of these results, in order to provide a more unified
view.

Going back to Valiant and Valiant (2017), their work actually in-
troduces and addresses a refinement of identity testing, which they
term “instance-optimal identity testing” and which statisticians may be
more familiar with under the name local minimax testing. That is, they
parameterize the sample complexity of the testing problem in terms
of the distance parameter ε and a suitable functional of the reference
distribution q, instead of the domain size k. Namely, they provide upper
and lower bounds (which match in many cases) of a quantity related
to the 2/3 “norm” ∥q∥2/3 of the reference distribution q. Note that,
when maximizing this quantity over all possible reference distributions
q ∈ ∆k, we retrieve the usual

√
k dependence; yet, this may be signif-

icantly smaller, for particular choices of q, leading to better sample
complexity for identity testing to q in those cases. For more on this, we
refer the reader to Blais et al. (2019) (where a discussion and alterna-
tive characterization as a function of q are provided) and Diakonikolas
and Kane (2016), as well as the excellent survey of Balakrishnan and
Wasserman (2018).
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To conclude, the case of uniformity (or, more broadly, identity test-
ing) for continuous densities has been considered by Ingster (see Ingster
(1997), and references within), under smoothness assumptions on the
unknown density. As mentioned in Chapter 1, such assumptions are nec-
essary to obtain non-trivial bounds: as an example, for Lipschitz densities
over [0, 1] (corresponding to the Sobolev space W 1,∞), Ingster’s results
establish a tight sample complexity of Θ

(
1/ε5/2

)
, attained by a χ2 test.

He further showed that in the adaptive setting (as discussed on p.10),
the sample complexity scales as Θ

(
log log(1/(ε(p) ∨ ε))/(ε(p) ∨ ε)5/2

)
.

Acknowledgment. Exercise 2.7 (and thus the failure of stochastic
dominance for the bipartite collision tester) is due to Moritz Schauer,
who provided a counterexample to stochastic dominance in this case (Schauer,
2021).

2.4 Exercises

Exercise 2.1. Prove the monotonicity of ℓp norms: if 1 ≤ r ≤ s ≤ ∞,
then ∥x∥s ≤ ∥x∥r for every x ∈ Rn.

Exercise 2.2. Prove Eq. (2.14): that is, the “unique elements” statistic
Z2 from Section 2.1.3 has expectation Ep[Z2] = ∑

i∈X p(i)(1−p(i))n−1.

Exercise 2.3. Establish Claim 2.2, using (or computing) the expression
for the first 4 moments of a Poisson(λ) random variable.

Exercise 2.4. Establish the upper bound part of Fact 2.1, by proving via
an Hoeffding or Chernoff bound that the empirical estimator achieves
the stated sample complexity. (The lower bound can be shown by
considering the case α = 1/2, but we have not seen in this chapter the
information-theoretic tools to establish it: this will be in Chapter 3.)

Exercise 2.5. Establish the upper bound part of Fact 2.2, by proving
via a Chernoff bound that appropriately thresholding the empirical
estimator achieves the stated sample complexity. (For the lower bound,
same remark as for Exercise 2.4.)
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Exercise 2.6. Follow the analysis of Theorem 2.1 to derive, for the
bipartite collisions tester, the guarantee Eq. (2.38) from the variance
bound Eq. (2.37).

Exercise 2.7. Show that, in contrast to what we did in the empirical-
distance tester case (Section 2.1.5), one cannot invoke stochastic dom-
inance in the analysis of the bipartite collision tester to obtain the
wishful variance bound Eq. (2.39) instead of Eq. (2.41). Specifically,
show that it fails even for k = 2: if M ∼ Bin(n1, p), N ∼ Bin(n2, p) and
M ′ ∼ Bin(n1, q), N ′ ∼ Bin(n2, q) (all independent) with 1/2 ≤ q < p ≤
1, it is not always true that

MN + (n1 −M)(n2 −N) ⪰M ′N ′ + (n1 −M ′)(n2 −N ′)

Hint: consider the case n1 = 1, and Pr[MN + (n1 −M)(n2 −N) ≥ 1]
as a function of p.

Exercise 2.8. It is known that x ⪯ y if, and only if, x = Ay for some
doubly stochastic matrix A (Arnold, 1987, Theorem 2.1). Check that
the averaging from Lemma 2.7 indeed corresponds to multiplying the
pmf p (seen as a vector) by such a matrix.

Exercise 2.9 (⋆). Generalize Lemma 2.13 to relax the condition n3 ≤
k2/3 to n3 ≤ k(s−1)/s, for any fixed (constant) integer s ≥ 3, by consid-
ering s-collisions instead of 3-collisions in Algorithm 8. How does the
ℓ∞ guarantee bound in (ii) change with s?

Exercise 2.10 (⋆). Recall that our χ2-based statistic (Eq. (2.19)) was
analyzed under the Poissonized sampling model, which led us to define
it with a −N i term in the numerator. We will show that this term is
necessary: that is, under the Poissonization assumption, consider the
“simpler” statistic

Z ′
3 :=

k∑
i=1

(N i − n/k)2

n/k
.

Show that its expectation is nk∥p− uk∥22 + k (so the expectation gap
remains the same), but that the variance now contains an extra term
k2

n . What sample complexity does this yield?
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Exercise 2.11 (⋆). Combine the doubling search technique discussed
in Section 1.1 with the sample complexity of uniformity testing given
in Eq. (2.50) to prove the following. There is an adaptive uniformity
testing algorithm which, on input k and ε ∈ (0, 1], and access to samples
from an unknown distribution p ∈ ∆k:

• correctly distinguishes between (1) p = uk and (2) ε(p) :=
dTV(p,uk) > ε, with probability at least 2/3;

• always takes at most

O

(
1
ε2

(√
k log log 1

ε
+ log log 1

ε

))
samples; but also

• if ε(p) > ε, takes at most

O

(
1

ε(p)2

(√
k log log 1

ε(p) + log log 1
ε(p)

))

samples, with probability at least 2/3; and, finally,

• show that this constant-probability bound on the number of
samples also holds in expectation.

That is, in the “far” case this algorithm never does much worse (up to
a log log factor) than an ideal algorithm provided with the exact value
ε(p) and asked to distinguish between p = uk and dTV(p,uk) = ε(p).

Exercise 2.12. Given two probability distributions p,q, an integer
n ≥ 1, and a parameter α ∈ [0, 1], consider the following two sampling
processes:

• Sample N ∼ Poisson(n), and draw N i.i.d. samples from the
mixture (1− α)p + αq.

• Sample N ∼ Poisson(n), and draw N i.i.d. samples from p. Then,
for each 1 ≤ i ≤ N , independently sample Bi ∼ Bern(α): if
Bi = 1, replace the i-th sample by a new (and independent from
everything else) sample drawn from q.
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Show that these two processes result in the same distribution.

Exercise 2.13 (⋆). Establish the analogue of Theorem 2.22 for the
two-distribution case (when both p,q are unknown, and you are given
n i.i.d. samples from each). Specifically, consider the statistic Z ′ =∑k
i=1
(
(Xi − Yi)2 −Xi − Yi

)
for which you will have to establish the

following counterpart of Claim 2.2:

Claim 2.3. If X ∼ Poisson(λ) and Y ∼ Poisson(µ) are independent,
then E

[
(X − Y )2 −X − Y

]
= (λ−µ)2 and E

[
((X − Y )2 −X − Y )2] =

(λ− µ)4 + 2(λ+ µ)2 + 4(λ+ µ)(λ− µ)2.

Show that the sample complexity is O(max(∥p∥2, ∥q∥2)/ε2). Try to
establish the (incomparable) bound O(min(∥p∥2, ∥q∥2)/ε2 + 1/ε).

Exercise 2.14. Show that the transformation Φ from Section 2.2.2
(Eq. (2.59)) “maps χ2 divergence to ℓ2 distance” in the following, ap-
proximate way: for any p,q ∈ ∆k,

∥Φq(p)− Φq(q)∥22 =
∑
i∈X

(p(i)− q(i))2

1 + ⌊kq(i)⌋ .

Conclude that, assuming mini q(i) ≥ 1/(2k) (as we could in Section 2.2.1
after using the “mixture trick” of Eq. (2.52)),

1
2χ

2(p || q) ≤ k∥Φq(p)− Φq(q)∥22 ≤ χ
2(p || q)

for every p ∈ ∆k.

Exercise 2.15 (⋆⋆). Generalize the transformation Φ from Section 2.2.3
in two ways: first, by replacing the mixture Φ(3)

q (p) = 1
2p + 1

2uk by
αp+(1−α)uk, where α ∈ (0, 1). Second, by replacing the choice k′ = 4k
in Φ(2)(p) by k′ = βk, for some integer β such that β(1− α) ≥ 1.

1. By tracking down the various restrictions on α, β and their use
across Φ(1), Φ(2), and Φ(3), show that doing so now maps identity
testing with parameters (k, ε) to uniformity testing with parame-
ters (

βk, α

(
1− 1

β(1− α)

)
ε

)
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2. Check that setting (α, β) = (1/2, 4) as in Section 2.2.3 recov-
ers Theorem 2.28, and the blowup factor of 32 discussed at the
end of the section.

3. Recalling that the sample complexity scales as
√
k/ε2, optimize

over (α, β) to find the optimal choice of parameters, and prove
that the resulting blowup is ≈ 12.2.

4. What would be the optimal choice of (α, β), and the corresponding
blowup, in a setting where the sample complexity of uniformity
testing scales as k/ε2 instead of

√
k/ε2? (This is not that far-

fetched: we will see in Section 4.3 an example of such a setting.)

2.5 Deferred proofs

We here provide the omitted proofs from the chapter. The first, from Sec-
tion 2.1.3, is due to Nazarov (2021).

Lemma 2.30 (Lemma 2.3, restated). Fix m ≥ 1 and k ∈ N. For any
x1, . . . , xk ≥ 0 such that ∑k

i=1 xi = 1, we have

m
∑

1≤i<j≤k xixj
(
(1− xi − xj)m−1 − (1− xi)m(1− xj)m

)∑k
i=1 xi(1− (1− xi)m)

≤ 1

Proof. Define (yi)1≤i≤k by yi := 1− (1−xi)m, and note that Bernoulli’s
inequality implies that yi ≤ mxi for all i. In particular, ∑k

i=1 yi ≤ m.
Further, since xi + xj ≤ 1 for all i ̸= j, we have 0 ≤ 1 − xi − xj ≤
(1−xi)(1−xj), which implies (1−xi−xj)m−1 ≤ (1−xi)m−1(1−xj)m−1.

This lets us bound the numerator as

m
∑
i<j

xixj
(
(1− xi − xj)m−1 − (1− xi)m(1− xj)m

)
= m

2
∑
i ̸=j

xixj
(
(1− xi − xj)m−1 − (1− xi)m(1− xj)m

)
≤ m

2
∑
i ̸=j

xixj(1− xi)m−1(1− xj)m−1(1− (1− xi)(1− xj))

≤ m

2
∑
i,j

xixj(1− xi)m−1(1− xj)m−1(xi + xj)
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To relate this to the denominator, which can be rewritten as ∑k
i=1 xiyi,

we rely on the following inequality: for every x ∈ [0, 1]

1− (1− x)m = m

∫ x

0
(1− u)m−1 dm ≥ mx(1− x)m−1

and so xi(1− xi)m−1 ≤ 1
myi for all i. It follows that

m
∑
i<j

xixj
(
(1− xi − xj)m−1 − (1− xi)m(1− xj)m

)

≤ 1
2m

∑
i,j

yiyj(xi + xj) = 1
m

k∑
i=1

xiyi

k∑
j=1

yj

≤
k∑
i=1

xiyi ,

concluding the proof.

Note: The variance analysis from Paninski (2008). The proof
of Theorem 2.4 presented in this survey departs from the original one
from Paninski (2008). The argument analyzing the expectation gap
(Lemma 2.2) is similar, although we tried to make it a little simpler and
intuitive (which, admittedly, is very subjective). The main difference
is in bounding the variance in the “far” case; indeed, while (Paninski,
2008) relies for this on the Efron–Stein inequality, the argument given
is flawed, and the claimed variance bound does not follow.

Specifically, the proof of Paninski (2008, Lemma 2) claims the bound

Varp[Z2] ≤ n
k∑
i=1

p(i)(1− (1− p(i))n−1)

which, if true, would imply (after renormalizing to match our notation)

Varuk
[Z2] ≤ 1

n
(1− (1− 1/k)n−1) ∼

k→∞

1
k

while the (exact) variance in the uniform case can be computed explicitly,
and is asymptotically Varuk

[Z2]∼k→∞
2
k . This shows that the former

upper bound cannot hold as stated. The issue arises in the first step,
when bounding the quantity 1

2
∑n
t=1 E

[
(S − S(t))2

]
after applying the
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Efron–Stein inequality, as (S − S(t))2 can take values 0, 1,or 4 (not just
0 or 1), and some events leading to these have been overlooked. It is not
clear to us how to fix their proof, which is why we chose to provide an
alternative argument to bound the variance. Interestingly, the analysis
from Paninski (2008, Lemma 2) can be used (partially) to bound the
variance of a different statistic, Z4, and we did so to derive Eq. (2.31)
in Section 2.1.5.

3 Information-theoretic lower bounds
In this chapter, we will cover several techniques and “ready-to-use”
theorems allowing us to easily (or, rather, not too painfully) establish
sample complexity lower bounds. As a guiding example, we will show
that many of the uniformity testing algorithms we saw Section 2.1 are
sample-optimal, by establishing (in several ways) the Ω(

√
k/ε2) sample

complexity lower bound for uniformity testing.

3.1 Indistinguishability, Le Cam, and Ingster’s
method

To establish a lower bound on the sample complexity of testing a given
property P = ⋃∞

k=1 Pk, we want to come up (for a given k) with a
“simple” family of (pairs of) distributions such that, when chosing such
a pair (p1,p0) at random, (i) p1 has the property, but p0 is far from it,
so a tester should distinguish between the two; but (ii) unless n is large
enough, no algorithm taking n samples can actually distinguish between
the two. The “simple” here is somewhat fuzzy, but can be rephrased as
“a family simple enough to make proving (ii) as painless as possible.”

In a slightly more formal way, the goal is to define two priors1 ζ0, ζ1
over probability distributions, such that

• ζ1 is supported on Pk (yes-instances); and

• ζ0 is supported on Pεk := { p ∈ ∆k : dTV(p,Pk) > ε } (no-instances);

1That is, two probability distributions over probability distributions.

99



DRAFT

and then, to show that it is impossible to distinguish two randomly
chosen p1 ∼ ζ1, p0 ∼ ζ0 from n samples unless n is large enough as a
function of k, ε, and possibly δ. One can also relax a little the above to
ask that ζ0 only be mostly supported on Pε (i.e., no-instances are only
far from Pk with high probability); and, similarly, one can possibly only
require that ζ1 only be mostly supported on Pk. One can even allow the
random choices of p0 and p1 to depend on each other (i.e., coupling ζ1
and ζ0). For simplicity, we will not worry too much about this in this
chapter.

Suppose now we came up with such a prior, and also that we chose
ζ1, ζ0 such that every p1,p0 are at distance exactly ε. By Lemma 1.4, to
distinguish with probability at least 1−δ between two such distributions
p0 and p1 from n samples, we must have

1− 2δ ≤ dTV

(
p⊗n

0 ,p⊗n
1

)
. (3.1)

To obtain a lower bound on n, we need to somehow relate this quantity
to dTV(p0,p1), which we know is ε. A first natural attempt is to use
the fact that total variation distance is subadditive: dTV

(
p⊗n

0 ,p⊗n
1

)
≤

n · dTV(p0,p1), which gives

1− 2δ ≤ nε (3.2)

leading to a sample complexity lower bound of Ω(1/ε). This is, quite
frankly, underwhelming. The issue here is that “total variation distance
does not tensorize,” i.e., that metric does not play nice when you take
products of probability distributions. Alright, so maybe we can use
a different metric (or “distance”) between distributions which does
tensorize, as a proxy?

Two choices come to mind: the first, Hellinger distance, or rather
its square, and Kullback–Leibler divergence. Both are related to TV
distance (Lemmas B.1 and B.3), and behave much better:

dTV

(
p⊗n

0 ,p⊗n
1

)2
≤ 2dH

(
p⊗n

0 ,p⊗n
1

)2
≤ 2ndH(p0,p1)2 (3.3)

and
dTV

(
p⊗n

0 ,p⊗n
1

)2
≤ 1

2D
(
p⊗n

0 ∥p
⊗n
1

)2
= 1

2nD(p0∥p1) , (3.4)
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respectively. If it so happens that dH(p0,p1) ≍ ε or D(p0∥p1) ≍ ε2

(both stronger statements than our assumption dTV(p0,p1) = ε, but
both reasonable, and easy to check when coming up with p0,p1), then
we get a sample complexity lower bound of Ω(1/ε2). Which is much
better, but still rather underwhelming: there is no dependence on k!

Why? We did not really take advantage of our “priors,” really, we
just fixed two p1,p0 and completely ignored whatever “the random
choice of a yes- and no-instance” could bring. Instead of analyzing
dTV

(
p⊗n

0 ,p⊗n
1

)
for fixed p0,p1, we could instead bound

Eζ0,ζ1

[
dTV

(
p⊗n

0 ,p⊗n
1

)]
, (3.5)

which conceivably could lead to some improvement. That will not be
enough, though: if dTV

(
p⊗n

0 ,p⊗n
1

)
≍ nε2 for every random choice of

p0,p1 – or even most of them – then taking this extra expectation will
not buy us anything. That is unfortunate, but we can do better! We
can put the expectation inside the total variation distance.

This follows from the following (simple) observation: if we have an
algorithm A which correctly outputs 1 with probability at least 1− δ
upon seeing n samples from any distribution p – that is, when given
one sample from p⊗n – then that algorithm must also be correct when
given a sample from any mixture µ = Eζ [p⊗n] = ∑

p ζ(p)p⊗n of those
p⊗n’s:

Pr
x∼µ

[A(x) = 1] = Ex∼µ[1{A(x) = 1}] = Ep∼ζ
[
Ex∼p⊗n [1{A(x) = 1}]

]
= Ep∼ζ

[
Pr

x∼p⊗n
[A(x) = 1]

]
≥ Ep∼ζ [1− δ] = 1− δ ;

and, similarly, for mixtures of no-instances and probability to output 0.2
It is worth emphasizing that here, the mixture is over n-fold distributions
p⊗n, not over the distributions themselves: that is, we first pick p
according to our prior ζ, then take all n samples from the same p – this

2In theoretical computer science, this observation is often referred to as (the easy
direction of) Yao’s Minimax Principle: see, e.g., Goldreich (2014, Appendix A.1) for
a discussion.
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is very different from taking n samples from the mixture Eζ [p], which
would mean we pick a new p for each sample! That is,

Ep∼ζ
[
p⊗n] ̸= Ep∼ζ [p]⊗n (3.6)

in general, and the argument above corresponds to the quantity on the
left. That is, we get

1− 2δ ≤ dTV

(
Eζ0

[
p⊗n

0

]
,Eζ1

[
p⊗n

1

])
, (3.7)

and the right-hand side can end up being much smaller than the RHS
of Eq. (3.1), or even than the expected distance from Eq. (3.5).3

Eq. (3.7) (and what leads to it) is often referred to as Le Cam’s
two-point method. Once we are there, however, we are left with the task
of bounding this total variation distance between two mixtures, which
seems anything but easy. In some cases, still, we can proceed further: an
important example is when one of the two mixtures (say, ζ1) is actually
concentrated on a single distribution p1 (as we will see soon, this is the
same for uniformity testing, for instance, where Pk is a singleton).

Let us further assume our family of no-instances are parameterized
as {pθ}θ∈Θ, and rewrite our mixture of no-instances ζ1 as a probabil-
ity distribution π over Θ. Picking a no-instance p0 from ζ1 becomes
equivalent to picking θ ∼ π, and returning pθ. Then, with this extra
assumption and this rewriting, Eq. (3.7) becomes

1− 2δ ≤ dTV

(
Eθ∼π

[
p⊗n
θ

]
,p⊗n

1

)
≤ 1

2

√
χ2
(
Eθ∼π

[
p⊗n
θ

]
|| p⊗n

1

)
, (3.8)

where we invoked the relation between total variation distance and
chi-square divergence (Lemma B.2) for the second inequality. At this
point, the reason for using this inequality might appear quite mysterious:
why χ2 instead of, say, KL divergence, or Hellinger distance, or basically
anything else? The reason lies in the following lemma, which shows how
to bound the chi-square divergence between a mixture and a single,
honest-to-goodness product distribution:

3It is worth pointing out that we always have
dTV

(
Eζ0

[
p⊗n

0
]
,Eζ1

[
p⊗n

1
])

≤ Eζ0,ζ1

[
dTV

(
p⊗n

0 , p⊗n
1
)]

, by joint convexity of
total variation distance (which is a consequence of it being an f -divergence). The
key is that, if we play our cards right when defining ζ0, ζ1, we will actually have
dTV

(
Eζ0

[
p⊗n

0
]
,Eζ1

[
p⊗n

1
])

≪ Eζ0,ζ1

[
dTV

(
p⊗n

0 , p⊗n
1
)]

.
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Lemma 3.1 (Ingster’s method). Consider a random variable θ such
that, for each realization θ = ϑ, p(n)

ϑ = p1,ϑ ⊗ · · · ⊗ pn,ϑ is a product
distribution. Further, let p(n) = p1 ⊗ · · · ⊗ pn be a fixed product
distribution. Then,

χ2
(
Eθ
[
p(n)
θ

]
|| p(n)

)
= Eθ,θ′

 n∏
j=1

(1 +Hj(θ, θ′))

− 1,

where θ′ is an independent copy of θ, and

Hj(ϑ, ϑ′) := Ex∼pj

[
(pj,ϑ(x)− pj(x))(pj,ϑ′(x)− pj(x))

pj(x)2

]

is the “chi-square inner product” of pj,ϑ and pj,ϑ′ with respect to pj .4

This statement is still slightly too general for our purposes, as in
our case all marginals of any fixed p(n)

ϑ (and those of p(n)) are the same,
since we take n i.i.d. samples. Applying Lemma 3.1 to Eq. (3.8) (after
squaring it to get rid of the square root) leads to

4(1− 2δ)2 ≤ Eθ,θ′∼π
[
(1 +H(θ, θ′))n

]
− 1 , (3.9)

where

H(θ, θ′) := Ex∼p1

[(pθ(x)− p1(x))(pθ′(x)− p1(x))
p1(x)2

]
(3.10)

At this point, the reader is probably quietly wondering why, exactly,
this is an improvement over what we had before, and where this is going.
Before going through an application which, hopefully, will answer both
of these questions and establish a lower bound for our running example
of uniformity testing, let us try to give a heuristic argument.

Suppose that we pick our prior over no-instance well, so that Eθ[pθ] =
p1: that is, the average of our no-instances is the yes-instance p1,

4To explain the name, observe that

Ex∼p

[
(q(x) − p(x))(q′(x) − p(x))

p(x)2

]
=
∑
x∈X

(q(x) − p(x))(q′(x) − p(x))
p(x) ,

and when q = q′ this is equal to χ2(q || p).
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which sounds like a reasonable thing to go for. If we expand the RHS
of Eq. (3.9), we get

Eθ,θ′
[
(1 +H(θ, θ′))n

]
− 1 = Eθ,θ′

[
1 + nH(θ, θ′) + . . .

]
− 1

= nEθ,θ′
[
H(θ, θ′)

]
+ (high-order terms)

Recalling the definition of H(θ, θ′) and by independence of θ, θ′, we can
then rewrite this first-order term as

nEθ,θ′
[
H(θ, θ′)

]
= nEθ,θ′

[
Ex∼p1

[(pθ(x)− p1(x))(pθ′(x)− p1(x))
p1(x)2

]]
= nEx∼p1

[(Eθ[pθ(x)]− p1(x))(Eθ′ [pθ′(x)]− p1(x))
p1(x)2

]
= 0

the last equality since Eθ[pθ(x)] = Eθ′ [pθ′(x)] = p1(x) (we chose our
prior well!). This means that the first-order term (at least) of that
expansion cancels out entirely: which is good news, as the more cancel-
lations we get the more likely the overall thing will be small, and the
better the upper bound we can hope for. That being said, it is worth
illustrating this with an example.

Uniformity testing lower bound. Let us get back to our running
example, uniformity testing. We saw in Chapter 2 (in various ways)
that the sample complexity of uniformity testing over a known domain
of size k is O

(√
k/ε2

)
. Can we show that this is optimal (up to constant

factors)?
To do so, we need to come up with a prior over yes-instances, and

one over no-instances. The former is immediate: since there is literally
only one yes-instance, the uniform distribution uk, our prior ζ1 will
just be concentrated on uk. For the latter, recalling what the “hard
cases” for our uniformity testing algorithms were in Section 2.1, a good
starting point would be to look at probability distributions “nearly
uniform” locally, but still far overall: something where each probability
is something like (1± ε)/k.

We also want as many of those distributions as possible in the
support of ζ0, as otherwise the testing problem would be too easy: if we
only have N no-instances, then a testing algorithm could do N pairwise
tests of the form “is it this specific p, or uk?: since each p is ε-far
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from uk, each test would cost O(log(1/δ)/ε2). By a union bound, doing
this with error probability δ := 1/(3N) would suffice for the whole
algorithm to succeed, and so the sample complexity overall would be
O((logN)/ε2). To have any chance of proving our

√
k lower bound, we

thus need N to be exponential in k.
Finally, we need each no-instance to be a bona fide probability

distribution, so it should sum to one: the simplest way to achieve this
is to pair elements of the domain together (assuming, without loss of
generality, that k is even) to perturb them jointly: if one element of
a pair has probability (1 + ε)/k, the other gets (1− ε)/k. Keeping all
this in mind, we define 2k/2 distributions, each parameterized by some
θ ∈ Θ := {−1,+1}k/2, as follows:

pθ(i) =
1 + (−1)iθ⌈i/2⌉ · 3ε

k
, i ∈ [k] (3.11)

that is, where θi ∈ {−1,+1} determines whether the perturbation for
elements 2i − 1, 2i is 1 ± 3ε (“up-down”) or 1 ∓ 3ε (“down-up”). For
every fixed θ ∈ {−1,+1}k/2, it is easy to check that the corresponding
pθ satisfies

dTV(pθ,uk) = 3
2ε > ε (3.12)

since each element of the domain contributes exactly 3ε/k to the ℓ1
distance; and that we have N := 2k/2 such no-instances (so, indeed,
exponentially many in k). To define our prior ζ0, since we do not have any
reason to do anything more complicated we will simply take the uniform
distribution over all these 2k/2 no-instances; equivalently, in terms of
parameter θ we will define our prior π as the uniform distribution over
Θ = {−1,+1}k/2, so the k/2 values θi are i.i.d. Rademacher random
variables.

One can then check that Eθ[pθ] = uk, fitting our previous discussion.
In view of bounding the RHS of Eq. (3.9), we need to first get a hold on
the quantity H(θ, θ′) defined in Eq. (3.10). Plugging in our definition
of pθ from Eq. (3.11) and recalling that p1 is simply uk, we get

H(θ, θ′) = 1
k

k∑
i=1

(kpθ(i)− 1)(kpθ′(i)− 1) = 18ε2

k

k/2∑
i=1

θiθ
′
i . (3.13)
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This is going well: using 1 + u ≤ eu and the fact that the θiθ′
i’s are i.i.d.

Rademacher random variables, we can write

Eθ,θ′
[
(1 +H(θ, θ′))n

]
− 1 ≤ Eθ,θ′

[
enH(θ,θ′)

]
− 1

= Eθ,θ′

[
e

18ε2n
k

∑k/2
i=1 θiθ

′
i

]
− 1

=
k/2∏
i=1

Eθ,θ′

[
e

18ε2n
k

θiθ
′
i

]
− 1

≤ e
81ε4n2

k − 1 (3.14)

where the second inequality follows from Hoeffding’s Lemma.5
Combining this with Eq. (3.9) and massaging the inequality, we get

that n must satisfy

4(1− 2δ)2 ≤ e
81ε4n2

k − 1 (3.15)

i.e., ε4n2/k ≳ 1 (for δ ≤ 1/2). We proved our lower bound!

Theorem 3.2. Every testing algorithm for uniformity must have sample
complexity n(k, ε, 1/3) = Ω(

√
k/ε2).

What about δ? To conclude this chapter, it is worth pointing out
that the above approach will not let us directly obtain any meaning-
ful dependence on the error probability δ. This is painfully apparent
from Eq. (3.15), as the LHS remains Θ(1) regardless of how small δ
becomes. At a higher level, this comes from our use of Lemma B.2
in Eq. (3.8), which by directly bounding the TV distance (always in
[0, 1]!) by the chi-square divergence, destroys any hope to have a lower
bound on the latter which grows as δ vanishes. Using Pinsker’s inequal-
ity (Lemma B.3) and then bounding KL by chi-square would lead to the
same issue; does this mean there is no hope in getting the dependence
on δ in our lower bound?

5Since the random variable θiθ
′
i is uniform on {−1, +1}, we could have computed

that expectation exactly; but this would have involved some unwieldy cosh which
we would have to upper bound later on anyway.
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Not quite. Instead of Lemma B.2, one could use the stronger bound
given by Lemma B.4 to relate total variation distance and Kullback–
Leibler divergence, and combine this with the refined upper bound
between KL and χ2 divergences given in Lemma B.5 to obtain

1
4δ ≤ 1 + χ2

(
Eθ∼π

[
p⊗n
θ

]
|| p⊗n

1

)
. (3.16)

(See Exercise 3.1 for the details.) As an example, combining this with
the upper bound

χ2
(
Eθ
[
p⊗n
θ

]
|| u⊗n

k

)
≤ e

81ε4n2
k − 1

derived in Eq. (3.14) for uniformity testing, this readily gives the
(improved, and optimal) lower bound, essentially for free.

Theorem 3.3. Every testing algorithm for uniformity must have sample
complexity n(k, ε, δ) = Ω(

√
k log(1/δ)/ε2).

We did not even have to start everything from scratch. Not too bad!

3.2 Indistinguishability via Fano: a bit of mu-
tual information

We will now cover another lower bound method, based on bounding
an information-theoretic quantity, the mutual information I(b ∧X)
between two suitable random variables. As in the previous session,
the first step is to come up with our two priors ζ1, ζ0 over yes- and
no-instances (and, in particular, to show that either all or most of the
no-instances are indeed ε-far from the property).

The second step is to look at the following process: (1) pick a
uniformly random bit b ∈ {0, 1}; (2) draw a distribution p from ζb;
(3) take n i.i.d. samples from p. The key idea is that if one has a testing
algorithm for our property (say, correct with probability 2/3), then
one can use it to distinguish between ζ0 and ζ1 – but then, one can
use this to guess the value of b with probability at least 2/3 based on
the n samples observed. Intuitively, this must mean those n samples
X = (X1, . . . , Xn) carry some non-trivial amount of information about
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b, that is, that the mutual information I(b ∧X) is “large.” This is made
formal in the next lemma:

Fact 3.1. Let b ∈ {0, 1} be a uniformly random bit, and X be a random
variable taking values in some set S. If there exists an algorithm A such
that Pr[A(X) = b] ≥ 2/3 (where the randomness is over b, X, and the
internal randomness of A), then I(b ∧X) ≥ 2/25.

Proof. We have

I(b ∧X) = H(b)−H(b | X) = 1−H(b | X)
≥ 1− h(Pr[A(X) ̸= b]) ≥ 1− h(1/3)
> 2/25 ,

where the first inequality is Fano’s (using that b takes values in {0, 1})
and the second is monotonicity of the binary entropy function h(x) =
−x log x− (1− x) log(1− x).

The third step is to upper bound I(b ∧X) as a function of k, ε, and
n, relying on the “nice” properties of mutual information (e.g., chain
rule, data-processing inequality, and whatever sticks after repeated
readings of Cover and Thomas (2006, Chapter 2)). To make the best
use of these nice properties, it is typically useful to make two additional
simplifications:

• First, instead of exactly n samples, in stage (3) of the sampling
process above we pick N ∼ Poisson(n) samples (where N is
independent of b and X). This is the “Poissonized sampling”
setting we saw in Chapter 2, and it will allow us to argue that
the number of times N i each element i of the domain is seen are
independent random variables (conditioned on the draw of p),
which will considerably simplify our analysis of I(b ∧X). This
Poissonization trick can be done roughly without loss of generality,
as discussed in Appendix C.

• Second, we will want to relax our requirement that the no-instances
are actual probability distributions, and only ask that they be
measures (not necessarily summing to one!), as long as they sum
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to something close to one with high probability: say, 1/2 ≤ ∥p∥1 ≤
3/2 with probability 1− o(1) (over the choice of p ∼ ζ0). This one
appears to be with a little more loss of generality, but it turns out
this can be assumed without losing much. (See Exercise 3.2.)

But again, let us go through an example to make this concrete.

Uniformity testing lower bound. Our single yes-instance is again
the uniform distribution uk, which takes care of defining ζ1. However,
we will use a slightly different prior ζ0 than in the previous section for
our no-instances: the reason is that, for the 2k/2 no-instances defined
in Eq. (3.11), the individual probabilities of elements 2i ans 2i− 1 were
not independently chosen (this was the whole point: they compensated
each other to have a total probability mass of one overall). As a result,
when choosing a no-instance, we would have some annoying dependencies
between N2i−1 and N2i, even after conditioning on b. We could handle
these dependencies here, but this introduces some tedious accounting:
the reader is encouraged to do so in Exercise 3.3, in this section we will
do something slightly different.

Namely, we will use the second relaxation discussed above, and just
define our prior ζ0 as the uniform prior over 2k distributions indexed
by θ ∈ {−1,+1}k, with

pθ(i) = 1 + θi · 3ε
k

, i ∈ [k] (3.17)

(i.e., compared to Eq. (3.11), we do not “pair” elements together). As a
result, we only can say that any given pθ will have

k∑
i=1

pθ(i) = 1 + 3ε
k

k∑
i=1

θi ∈ [1− 3ε, 1 + 3ε] (3.18)

(and actually have ∑k
i=1 pθ(i) = 1 + O(ε/

√
k) with high probability

over the choice of θ); but that is enough for us. What this does buy
us is that, combined with the Poissonization sampling assumption
discussed above, conditioned on b the random variables N1, . . . , Nk

are mutually independent, with either N i ∼ Poisson(n/k) (if b = 1) or
N i ∼ 1

2 Poisson((1 + 3ε)/k) + 1
2 Poisson((1− 3ε)/k) (if b = 0).
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Thus, all that remains is getting a good upper bound on I(b ∧X),
where X is the set of Poisson(n) samples from our 3-step process.
Since the order of the N samples in X does not matter, we have
I(b ∧X) = I(b ∧ (N1, . . . , Nk)), and can write

I(b ∧X) = H(N1, . . . , Nk)−H((N1, . . . , Nk) | b)

= H(N1, . . . , Nk)−
k∑
i=1

H(N i | b)

(conditional independence)

≤
k∑
i=1

H(N i)−
k∑
i=1

H(N i | b) (subadditivity)

=
k∑
i=1

I(b ∧N i) ,

which means that to bound I(b ∧X) it suffices to analyze each I(b ∧N i)
separately. In our particular case, by symmetry of the uniform distribu-
tion and of our prior (uniform prior over all our “Paninski” no-instances),
all those I(b ∧N i)’s are equal:

I(b ∧X) ≤ kI(b ∧N1) . (3.19)

To analyse this, we first replace the RHS by something a little bit more
manageable, to get the following:

I(b ∧X) ≤ k

2

∞∑
j=0

Pr[N1 = j | b = 1]
(

1− Pr[N1 = j | b = 0]
Pr[N1 = j | b = 1]

)2

(3.20)
To see where this comes from, recall that mutual information is ex-
pected KL divergence, and chi-square divergence upper bounds KL:
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and Eq. (3.20) is actually a “chi-square type” quantity in disguise.

I(b ∧N1) = Eb
[
D
(
PN1|b∥PN1

)]
≤ Eb

[
χ2
(
PN1|b || PN1

)]
= 1

2
(
χ2
(
PN1|b=1 || PN1

)
+ χ2

(
PN1|b=0 || PN1

))
= 1

2
( ∞∑
j=0

(Pr[N1 = j | b = 1]− Pr[N1 = j])2

Pr[N1 = j]

+
∞∑
j=0

(Pr[N1 = j | b = 0]− Pr[N1 = j])2

Pr[N1 = j]
)

= 1
2

∞∑
j=0

(Pr[N1 = j | b = 0]− Pr[N1 = j | b = 1])2

Pr[N1 = j | b = 0] + Pr[N1 = j | b = 1] (3.21)

= 1
2

∞∑
j=0

Pr[N1 = j | b = 1]

(
1− Pr[N1=j|b=0]

Pr[N1=j|b=1]

)2

1 + Pr[N1=j|b=0]
Pr[N1=j|b=1]

using for the second-to-last equality that, since b is a uniform bit,
Pr[N1 = j] = 1

2 Pr[N1 = j | b = 1] + 1
2 Pr[N1 = j | b = 0] for all j ≥ 0.

In view of bounding the RHS of Eq. (3.20), it is time to take
advantage of what we know: after all, we know what our no-instances
and yes-instance look like, and we chose them for a reason. Recalling
that we work in the Poissonized sampling model, N1 ∼ Poisson(np(1)),
so we can compute

Pr[N1 = j | b = 1] = e−n/k (n/k)j
j!

Pr[N1 = j | b = 0] = 1
2

(
e− n(1+3ε)

k
(n(1 + 3ε)/k)j

j! + e− n(1−3ε)
k

(n(1− 3ε)/k)j
j!

)

and, in particular,

Pr[N1 = j | b = 0]
Pr[N1 = j | b = 1] = 1

2
(
e− 3nε

k (1 + 3ε)j + e
3nε

k (1− 3ε)j
)
. (3.22)
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We can plug this back into Eq. (3.20), to get

I(b ∧X) ≤ k

2e
−n/k

∞∑
j=0

(n/k)j
j!

(
1− e− 3nε

k (1 + 3ε)j + e
3nε

k (1− 3ε)j
2

)2

= k

2

(
cosh

(
9nε2

k

)
− 1

)
≤ k

2

(
e

81n2ε4
2k2 − 1

)
; (3.23)

the last inequality being cosh u ≤ eu
2/2, and the equality following

from either a tedious but manageable computation involving known
converging series, or a quick computation involving Julia, Mathematica,
or one’s weapon of choice.

Since we know by Fact 3.1 that we must have I(b ∧X) ≳ 1, putting
the two together implies that we must have

81n2ε4

2k2 ≥ ln
(

1 + 4
25k

)
≍ 1
k

proving our lower bound:

Theorem 3.4. Every testing algorithm for uniformity must have sample
complexity n(k, ε, 1/3) = Ω(

√
k/ε2).

To conclude this section, a small remark: in Fact 3.1, we fixed a
probability of error 1/3, leading to the bound I(b ∧X) ≥ 2/25. This can
be generalized easily to probability of error 1− δ, with a corresponding
bound I(b ∧X) ≥ 1− h(δ); however, this approach will not lead to a
non-trivial dependence on δ when considering n(k, ε, δ). This is because,
no matter how small δ, I(b ∧X) ≤ 1 (as b is a single bit): so the
left-hand-side of Eq. (3.23) cannot be shown to grow unboundedly as δ
goes to 0.

3.3 Indistinguishability via moment-matching

We will here describe a general, out-of-the-box theorem which applies to
a broad class of distribution properties: namely, the class of symmetric
properties, which are those which do not depend on the individual labels
of the domain elements.
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Definition 3.1. A property P = ∪∞
k=1Pk of distributions is said to be

symmetric if it is closed under permutations of the domain: for every k
and every permutation σ : Xk → Xk, if p ∈ Pk then p ◦ σ ∈ Pk.

A by now familiar example of symmetric property is uniformity,
Pk = {uk}, since the uniform distribution is invariant by relabeling:
uk(σ(i)) = uk(i) for every i ∈ Xk and every permutation σ of Xk.
Other notable examples include the property of “all distributions of
support size at most s,” that of “distributions of (Shannon) entropy
at least h,” but, for instance, not the property of “distributions with a
non-increasing pmf” (since it depends on the ordering of the domain).

The definition of symmetric properties can be extended to multiple
distributions over the same domain: for instance, taking Xk = [k]× [k], a
property Pk of product distributions is symmetric if p1⊗p2 ∈ Pk implies
p1 ◦ σ ⊗ p2 ◦ σ ∈ Pk for all permutations σ. This is the case, e.g., of
the property corresponding to closeness testing, { p1 ⊗ p2 : p1 = p2 },
mentioned in Chapter 1.

Symmetric properties are nice in the sense that, when considering
them, one can completely forget about the individual values of the n
samples taken, and focus instead on the empirical histogram. That is,
a sufficient statistic for symmetric properties is the fingerprint of the
samples, which is just the tuple

F := (F 0, F 1, F 2, . . . , Fn) ∈ Nn+1

where F j = ∑k
i=1 1{N i = j} is the number of elements of the domain

which appear exactly j times among the n samples. In particular, we
always have ∑n

j=0 F j = n. E: Check
that you
can express
several of
the
algorithms
in Sec-
tion 2.1 as a
function of
F only: Ex-
ercise 3.5.

The main result discussed in this section is the “Wishful Think-
ing Theorem” of Valiant (2011), which applies to testing symmetric
properties of distributions. Intuitively, this theorem ensures that “if the
low-degree moments (ℓp norms) of two distributions match, then these
distributions (up to relabeling) are hard to distinguish.” To see why this
is the case, and justify the name of the theorem, observe that since we
focus on symmetric properties all which matters is the fingerprint F
introduced above; that is, the number of j-collisions, for every j ≥ 0.
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Now, given a distribution p, the number of j-collisions in n samples
has expectation (

n

j

)
∥p∥jj ≍ n

j∥p∥jj

and variance, wishfully ignoring all dependencies, maybe something
like nj∥p∥jj as well (roughly what it would be if j-wise collisions were
Binomial with parameters

(n
j

)
and ∥p∥jj – again, wishful thinking). So,

given two probability distributions pyes,pno, if the squared gap between
the expected numbers of j-wise collisions was much smaller than the
maximum of the two variances

(nj∥pyes∥jj − n
j∥pno∥jj)2 ≪ max(nj∥pyes∥jj , n

j∥pno∥jj)

for all j ≥ 1; or, equivalently,

|nj∥pyes∥jj − nj∥pno∥jj |√
max(nj∥pyes∥jj , nj∥pno∥jj)

≪ 1

for all j ≥ 1, then we could hope that the two distributions are indis-
tinguishable from their fingerprints on n samples. Well, the reasoning
above is flawed in a few ways, but can be made rigorous with enough
work. Luckily, someone else took care of this already, by showing that
closeness of moments implies closeness (in total variation distance) of
the distributions of fingerprints:

Theorem 3.5 (Wishful Thinking Theorem (Valiant, 2011, Theorem 4.10)).
Fix any symmetric property P. Given a positive integer n, a distance
parameter ε ∈ (0, 1], and two distributions pyes,pno ∈ ∆k, suppose the
following conditions hold:

1. ∥pyes∥∞, ∥pno∥∞ ≤
1

500n ;

2. letting myes, mno be the n-based moments of pyes,pno (defined
below),

∞∑
j=2

|myes(j)−mno(j)|
⌊j/2⌋!

√
1 + max(myes(j),mno(j))

<
1
24 ,

where myes(j) := nj∥pyes∥jj , mno(j) := nj∥pno∥jj for j ≥ 0,
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3. pyes ∈ Pk and dTV(pno,Pk) > ε.

Then every testing algorithm for P must have sample complexity
n(k, ε, 1/3) > n.

(Side remark: the term j = 1 does not appear in the sum, since n∥p∥1 =
n for every distribution p, and so this term always cancels out.)

To see the strength of this theorem, let us use it to prove the
Ω
(√

k/ε2
)

lower bound for uniformity testing. Our distribution pyes

will, of course, have to be the uniform distribution uk itself; as for
pno, let us take it to be any of the instances of “Paninski construction”
(Eq. (3.11)), so that

pno(2i) = 1 + 3ε
k

, pno(2i− 1) = 1− 3ε
k

, 1 ≤ i ≤ k/2

(where we again assume without loss of generality that k is even, and
ε ∈ (0, 1/3]). We then have dTV(pno,Pk) = dTV(pno,uk) = 3

2ε > ε; so
let’s check the two conditions of the theorem hold.

The first condition, ∥pyes∥∞, ∥pno∥∞ ≤
1

500n will be satisfied as long
as n ≤ k

1000 , since ∥pyes∥∞ ≤ ∥pno∥∞ ≤ 2/k. This is a limitation which
will limit the range of applicability of the lower bound, but we can live
with it (and will get back to it later).

Turning to the second condition, we need to compute these n-based
moments. Luckily, it is a simple matter to check that, for every j ≥ 2,

myes(j) = nj

kj−1 (3.24)

while

mno(j) = nj
k∑
i=1

pno(i)j = nj
(
k

2

(1 + 3ε
k

)j
+ k

2

(1− 3ε
k

)j)

= nj

kj−1

(
(1 + 3ε)j + (1− 3ε)j

2

)
≤ 2jnj

kj−1 (3.25)

For instance, for the special case of j = 2, the expression is a little nicer,
and becomes

mno(2) = (1 + 9ε2)n
2

k
. (3.26)
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Without wanting to spoil the surprise, we “should” expect the term
j = 2 of the series ∑∞

j=2
|myes(j)−mno(j)|

⌊j/2⌋!
√

1+max(myes(j),mno(j))
to dominate (as the

second moment ∥p∥22 of the distribution is “what gives it away” in
uniformity testing, as we saw now and again in Section 2.1), so we will
want to make sure we handle that term as tightly as possible.

With the above expressions at our disposal, we can proceed: first,
since the series decays quite fast already (at least geometrically) as
n/k ≪ 1, the factorial in the denominator does not look crucial and it
seems reasonable to ignore it. Moreover this maximum in the denomi-
nator seems annoying and will prevent us from easily computing the
series, so let’s get rid of it as well:

∞∑
j=2

|myes(j)−mno(j)|√
1 + max(myes(j),mno(j))

≤
∞∑
j=2
|myes(j)−mno(j)|

≤ 9ε2n2

k
+

∞∑
j=3

(2j − 1)nj

kj−1

≤ 9ε2n2

k
+ 2n

∞∑
j=2

2jnj

kj

= 9ε2n2

k
+ 8n3

k2 ·
1

1− 2n/k

≤ 9ε2n2

k
+ 9n3

k2

where we used the assumption that n ≤ k/1000 to guarantee convergence
of the geometric series, and bound its sum. Now, even ignoring the
second term, we see that the RHS will only be less that 1/24 (as required
by the second condition of the theorem) if n≪

√
k/ε, so the best lower

bound we can hope for is Ω
(√

k/ε
)
. But we wanted Ω

(√
k/ε2

)
!

Oops.

What went wrong? We were a little too eager to get rid of “this maximum
in the denominator.” It is annoying, and it is a good idea to get rid of
it in order to be left with a geometric series (at least to get a sense of
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what is going on), but not in that way. Let’s try again.
∞∑
j=2

|myes(j)−mno(j)|√
1 + max(myes(j),mno(j))

≤
∞∑
j=2

|myes(j)−mno(j)|√
myes(j)

=
∞∑
j=2

nj/2

k(j−1)/2

(
(1 + 3ε)j + (1− 3ε)j

2 − 1
)

= 1
2
√
k

∞∑
j=2

(αj + βj − 2γj)

where α := (1 + 3ε)
√
n/k, β := (1 − 3ε)

√
n/k, γ :=

√
n/k, and we

used Eqs. (3.24) and (3.25) for the first equality. Since all three are in
(0, 1) (recall that we have n≪ k), we can compute the geometric series
to get

∞∑
j=2

|myes(j)−mno(j)|√
1 + max(myes(j),mno(j))

≤ 1
2
√
k

(
(1 + 3ε)2γ2

1− (1 + 3ε)γ + (1− 3ε)2γ2

1− (1− 3ε)γ −
2γ2

1− γ

)
This looks better! Sure, this is quite ugly; but a Taylor expansion at 0
(since γ =

√
n/k ≪ 1) tells us that the parenthesis of the RHS is

18ε2γ2 + o(γ2) = 18ε2n

k
+ o

(
n

k

)
so we should be fine; and indeed, one can check that that parenthesis is
equal to

18ε2γ2

(1− γ)(1− (1 + 3ε)γ)(1− (1− 3ε)γ) ≤ 144ε2γ2 .

From this, we get
∞∑
j=2

|myes(j)−mno(j)|√
1 + max(myes(j),mno(j))

≤ 1
2
√
k
· 144ε2n

k
= 72ε2n√

k
. (3.27)

This in turn will be less than 1/24 for n ≤
√
k/(1728ε2). Success!

Recalling finally the condition n ≪ k (for the first condition of the
Wishful Thinking theorem to hold) which imposes ε ≫ 1/k1/4, by
invoking Theorem 3.5 we get the result we wanted:
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Theorem 3.6. Every testing algorithm for uniformity must have sample
complexity n(k, ε, 1/3) = Ω(

√
k/ε2), provided that ε ≥ 1/k1/4.

The key aspect of this lower bound was how painless it was to
obtain it. The main idea was to use the same Paninski construction as
before, check a couple conditions, compute a geometric series, and then
conclude by Theorem 3.5. (Sure, it might have felt a little longer than
this, but this is mostly due to the author’s choice of going through two
consecutive attempts, instead of skipping directly to the second one.)

3.4 Indistinguishability on an instance-by-instance
basis

We will now discuss and illustrate the use of a very convenient (albeit
intimidating) result due to Valiant and Valiant (2017), which allows
one to establish lower bounds tailored to any reference distribution q.

Theorem 3.7. Given a distribution q over [k], and associated values
αi such that αi ∈ [0, 1] for all i ∈ [k], define the set of distributions
C = {pz}z∈{−1,+1}k by setting, for every z ∈ {−1,+1}k,

pz(i) := (1 + ziαi)q(i)∑k
j=1(1 + zjαj)q(j)

, i ∈ [k] (3.28)

i.e., pz(i) ∝ (1 + ziαi)q(i). Then there exists an absolute constant
c > 0 such that any algorithm which, given n i.i.d. samples from an
arbitrary distribution p, distinguishes with success probability at least
2/3 between (i) p = q and (ii) p ∈ C, must satisfy

n ≥ c√∑
i α

4
iq(i)2

. (3.29)

Further, if maxi αiq(i) ≤ 1
2
∑k
i=1 αiq(i), then

Pr
Z

[
dTV(pZ ,q) > 1

4

k∑
i=1

αiq(i)
]
≥ 1

2 , (3.30)

where Z is uniformly random on {−1,+1}k.
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This is a bit of a mouthful, so let’s break Theorem 3.7 down be-
fore seeing a few corollaries and applications. First, given a reference
distribution q, and a choice of “element-wise perturbations” values
α1, . . . , αk, Eq. (3.28) says we should define a “hard instance” by setting
p(i) = (1 ± αi)q(i), choosing the sign independently and uniformly
at random for every i, and then normalizing the resulting p to make
it a true probability distribution. After doing this, Eq. (3.29) states
that distinguishing q from a hard instance p chosen randomly this way
requires Ω(1/

√∑
i α

4
iq(i)2) samples. Finally, Eq. (3.30) tells us that

(under some mild condition on the αi’s), most of those hard instances
are actually far from q; in particular, we will typically want to choose
the αi’s so that the guaranteed distance 1

4
∑k
i=1 αiq(i) is equal to our

parameter ε.

But how should we choose these values α1, . . . , αk? In view of what
we just discussed, it seems natural to set αi := 4ε for all i, ensuring
that 1

4
∑k
i=1 αiq(i) = ε. This also immediately satisfies maxi αiq(i) ≤

1
2
∑k
i=1 αiq(i), as long as ∥q∥∞ ≤ 1/2: a rather mild condition. As

for Eq. (3.29), plugging in this choice of αi’s shows that it becomes

n ≳
1

ε2∥q∥2
which seems. . . good? For instance, when q is the uniform distribution,
then ∥q∥2 = 1/

√
k, and we get an Ω(

√
k/ε2) lower bound! Specifically,

we (almost) proved:

Theorem 3.8. Every testing algorithm for identity with reference q
must have sample complexity n(k, ε, 1/3) = Ω(1/(ε2∥q∥2)), provided
that ∥q∥∞ ≤ 1/2.

In particular, every testing algorithm for uniformity must have
sample complexity n(k, ε, 1/3) = Ω(

√
k/ε2).

Proof. The above discussion, combined with Theorem 3.7, almost es-
tablishes the result we want, up to some annoying detail: the success
probability is not exactly what we needed, due to the fact that Theo-
rem 3.7 only guarantees a random distribution pz is ε-far from q with
probability 1/2. Namely, assume we have a testing algorithm A for
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identity with reference q with sample complexity n = n(k, ε, 1/3). We
can use it to distinguish between p = q and a (uniformly randomly
chosen) p from C (as defined with our choice αi = 4ε), giving that (1) if
the distribution is q, then we say so with probability at least 2/3 (good);
(2) if the distribution is ε-far from q, then we say p ∈ C with proba-
bility at least 2/3 (good); but if (3) if the distribution is in C but not
ε-far from q, then we cannot say anything about being right or wrong
(bad). So when p is chosen at random from C, we can only guarantee
we are correct with probability at least 2/3 · (1/2) = 1/3. . . not 2/3,
which would be necessary to get the sample complexity lower bound
from Theorem 3.7 (Eq. (3.29)) to apply.

Fortunately, there is a fix. Define A′ as follows: given “enough”
samples (but still O(n)), it runs A on disjoint subsets of n samples and
takes a majority vote, to amplify its success probability from 2/3 to
3/4 (as described in Lemma 1.1). Looking at the output, it then does
the following:

• if the output is 1 (p ̸= q), then it outputs 1;

• if the output is 0 (p = q), then it outputs 0 with probability
17/24, and 1 with probability 7/24.

Why did we do this? If p = q, then the probability that A′ correctly
outputs 0 is now at least 3

4 ·
17
24 >

1
2 (worse than before). But if p ∈ C,

it will (correctly) output 1 with probability at least

3
4 ·

1
2 + 1

2 ·
7
24 >

1
2

(better than before). Since both probabilities are constants greater than
1/2, we can again use the same amplification trick (Lemma 1.1) on A′

to get A′′, which is correct in distinguishing p = q from p ∈ C with
probability at least 2/3 in both cases. Moreover, since all these ampli-
cations only required to blow up the sample complexity by a constant
factor, A′′ still uses n′ = O(n) samples, and applying Theorem 3.7 on
A′′ leads to

n′ = Ω(1/(ε2∥q∥2))

which implies n = Ω(1/(ε2∥q∥2)).
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E: Apply
this to the
Binomial
distribution,
to get
Ω(k1/4/ε2).

This corollary is very handy, and provides a non-trivial lower bound
as a function of some easily interpretable function of the reference q.
One can even generalize it to distributions over N instead of [k] (infinite
discrete domains), keeping the same statement and proof!

This raises the question: is Theorem 3.8 always optimal? Or, to put
things more bluntly: is allowing for different αi’s in Theorem 3.7 useful,
or is it just for show, and unnecessarily complicated?

It is not just for show. Consider the following “Zipf” distribution q
on [k], where q(i) ∝ 1/

√
i:

q(i) = 1
Hk,1/2

√
i
, i ∈ [k] , (3.31)

where

Hk,1/2 :=
k∑
i=1

1√
i
∼

k→∞
2
√
k

is the generalized Harmonic number of order 1/2 (and Hk will be the
usual Harmonic number). A direct computation then shows that

∥q∥2 =
√
Hk

Hk,1/2
∼

k→∞

√
ln k

2
√
k
,

and so Theorem 3.8 gives a lower bound of Ω
( √

k

ε2
√

log k

)
samples. This

does not look too bad, especially since we know from Chapter 2 that
an upper bound of O

(√
k/ε2

)
samples holds. But that leaves a gap of

√
log k between the two, which could go either way.

However, let us look at this q, and what a typical “local perturbation”
p ∈ C looks like when we perturb each element by 1± ε (Fig. 3.1):
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Figure 3.1: Our reference q (Zipf distribution), along with a randomly chosen
perturbation p, here depicted for k = 200, ε = 1/10.

While the second half (“tail”) of the distribution looks somewhat
uniform (all probabilities between k/2 and k are within a factor

√
2),

the first half is clearly not, with the first few elements having much
higher probability. Perturbing those heavy elements by the same relative
amount as the rest, “intuitively,” is not a good idea, as it is easier to
detect and can give away a lot more information. Instead, we will see
what happens when we only perturb this somewhat-uniform tail of q:
define our αi’s by

αi :=

16ε if i ≥ k
2

0 otherwise

In view of applying Theorem 3.7, we first check that the distance of our
hard instances pz to q will be at least ε: maxi αiq(i) = 16εq(k/2)≪ ε,
and

1
4

k∑
i=1

αiq(i) = 4ε
Hk,1/2

k∑
i= k

2

1√
i

= 4ε
(

1−
H k

2 ,1/2

Hk,1/2

)
≥ 4

(
1− 1√

2

)
ε > ε ,

so by Eq. (3.30) the distance is fine. Turning to the sample complexity
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lower bound this will lead to, we compute
k∑
i=1

α4
iq(i)2 = (16ε)4

H2
k
2 ,1/2

k∑
i= k

2

1
i

= (16ε)4

H2
k
2 ,1/2

(
Hk −H k

2

)
≍ ε4

k

since Hk − Hk/2 = ln 2 + o(1). By Eq. (3.29), this means we get a
(tight) lower bound of Ω(

√
k/ε2) samples! All we needed to do was to

restrict our perturbation to the “near-uniform” part of the reference
distribution; crucially, this required the ability to choose different αi’s
for different i, as allowed by Theorem 3.7.

To conclude this section, we will derive another corollary to Theo-
rem 3.7, which provides the “best” perturbation possible for any given
reference q; that is, an optimal choice for the αi’s as a function of
q. Based on our previous example, we know that αi somehow has to
adapt to q(i), to differentiate between the heavy elements and the
“near-uniform” part of the distribution q.

Now, on the one hand we want to establish as large a lower bound
as possible, and so Eq. (3.29) says we should minimize ∑k

i=1 α
4
iq(i)2.

On the other hand, for our lower bound to be meaningful, we also need
our hard instances to be at distance ε from q, and for that Eq. (3.30)
imposes the condition ∑k

i=1 αiq(i) ≍ ε. Since

k∑
i=1

α4
iq(i)2 ≤ max

i
α3
iq(i) ·

k∑
i=1

αiq(i) (3.32)

combining the two conditions leads us to try and minimize maxi α3
iq(i),

and the condition for equality in Hölder’s inequality further suggests
we should have α3

iq(i) constant; that is,

αi ∝ 1/q(i)1/3 . (3.33)

We may not be able to do this exactly, as the theorem also requires that
αi ≤ 1, so we will have to cap our αi’s; but this motivates the following
idea. Without loss of generality, assume that q is non-increasing: q(1) ≥
q(2) ≥ · · · ≥ q(k) (we can, since we know q, and can permute the
domain if we want) and ε ∈ (0, 1/8]; and assume, with some loss of
generality, that q(1) = ∥q∥∞ ≤ 1/2. First, define α ≥ 0 as a value such
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that
1
4

k∑
i=2

(
1 ∧ α

q(i)1/3

)
q(i) = ε (3.34)

where we start the summation at i = 2 to (later) handle the (annoying)
condition from Theorem 3.7 on maxi αiq(i), which will be α1q(1). To
see why such a choice of α always exists, note that the LHS of Eq. (3.34)
is continuous and non-decreasing in α, equal to 0 for α = 0, and goes
to 1

4
∑k
i=2 q(i) = 1

4(1− ∥q∥∞) ≥ 1
8 for α→∞.

One we have this value α, we can then set

αi =

1 ∧ α
q(i)1/3 if 1 ≤ i ≤ k

α2
q(2)
q(1) if i = 1

(3.35)

where the assumption that q is non-increasing implies that (i) α1 ≤
α2 ≤ α3 ≤ · · · ≤ αk, and (ii) α1q(1) = α2q(2) ≥ α3q(3) ≥ · · · ≥ αkq(k)
(since αiq(i) = q(i) ∧ (αq(i)2/3)).
Our (somewhat bizarre) choice of α1 is a technicality to ensure that

max
i
αiq(i) = α1q(1) = 1

2(α1q(1) + α2q(2)) ≤ 1
2

k∑
i=1

αiq(i)

so that the condition of Theorem 3.7 preceding Eq. (3.30) is satisfied.
Letting L to be the largest value i ≥ 2 such that αq(i)−1/3 ≤ 1, we
then can rewrite Eq. (3.34) as

α
L∑
i=2

q(i)2/3 +
k∑

i=L+1
q(i) = 4ε , (3.36)

from which α ≤ 4ε/∑L
i=2 q(i)2/3. Finally, recalling Eq. (3.29), we bound

k∑
i=1

α4
iq(i)2 ≤

k∑
i=2

α4
iq(i)2 = α4

L∑
i=2

q(i)2/3 +
k∑

i=L+1
q(i)2

≤ α3

α L∑
i=2

q(i)2/3 +
k∑

i=L+1
q(i)


= 4εα3 (By Eq. (3.36))

≤ (4ε)4(∑L
i=2 q(i)2/3

)3 (3.37)
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where we used that q(i) ≤ α3 for all i ≥ L+ 1 in the second inequality.
Applying Theorem 3.7 (along with the similar arguments as in the proof
of Theorem 3.8), what this shows is a lower bound of

Ω


(∑L

i=2 q(i)2/3
)3/2

ε2

 (3.38)

samples to test identity to q, where L = L(q, ε) is defined above, and
q satisfies ∥q∥∞ ≤ 1/2 and is (without loss of generality) assumed
non-decreasing. This bound can seem quite daunting, due to the way
L(q, ε) is defined; fortunately, we can relax it a little to make it more
interpretable (though technically looser).

Observe that Eq. (3.36) also implies ∑k
i=L+1 q(i) ≤ 4ε; thus, if we

define K = K(q, ε) as the largest integer such that ∑k
i=K q(i) > 4ε,

we are guaranteed that K(q, ε) ≤ L(q, ε) and therefore ∑K
i=2 q(i)2/3 ≤∑L

i=2 q(i)2/3. This leads to the following corollary:

Theorem 3.9. Given a probability distribution q ∈ ∆k, let q̃−max
−4ε

denote the vector obtained by seeing q as a vector in [0, 1]k, and
removing (i) its largest entry, and (ii) its smallest entries, stopping just
before the total removed exceeds 4ε. Then every testing algorithm for
identity with reference q must have sample complexity n(k, ε, 1/3) =
Ω(∥q̃−max

−4ε ∥2/3/ε
2), provided that ∥q∥∞ ≤ 1/2 and ε ∈ (0, 1/8].

One can check that this does retrieve the Ω(
√
k/ε2) testing lower bound

both when (1) q is the uniform distribution, (2) q is the Zipf distribution
we saw in our earlier example. E: Check it!

(Exer-
cise 3.4)

Finally, it is worth mentioning that Theorem 3.7 is not restricted
to identity testing (although this is the application we detailed in this
section). One can use it to establish indistinguishability results for other
questions, focusing on the sample complexity lower bound it provides
(Eq. (3.29)) and possibly ignoring the distance part (Eq. (3.30)). For
instance, it can be used to establish sample complexity lower bounds
for testing in other norms than total variation distance, or to obtain
lower bounds on estimating some parameter of interest.
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3.5 Proving hardness by reductions

In this section, we will shift focus a little, and discuss how to leverage
work (other) people did in order to establish new sample complexity lower
bounds. To illustrate the idea, consider the property P↘ = ∪∞

k=1P
↘
k of

monotone (non-increasing) distributions, i.e.,

P↘
k := { p ∈ ∆k : p(1) ≥ p(2) ≥ · · · ≥ p(k) } (3.39)

Say we want to test this property P↘: that is, given samples from
a distribution over {1, 2, . . . , k}, we want to test whether its pmf is
non-increasing; more specifically, say we want to show it is not easy.
We could try to use techniques from the previous subsections (though
probably not directly those from Section 3.3, as P↘ is most definitely
not a symmetric property) to establish a sample complexity lower bound:
this will require quite a bit of thinking and at least of few non-trivial
computations.

But we have already shown (in a few different ways by now) that
uniformity testing had sample complexity Ω(

√
k/ε2). Can we somehow

show that testing monotonicity is at least as hard, and get the same lower
bound without working much more? Enters the concept of reduction,
quite central to (theoretical) computer science. We already saw it
in Section 2.2.3, when we used it to show how to use any uniformity
testing algorithm for the more general problem of identity testing: that
is, we described a reduction from uniformity to identity testing to get
an algorithm (upper bound) for the latter, using an algorithm for the
former. But every coin has two sides, and a reduction can be used to
show lower bounds too!

Here’s how. Imagine we had an “efficient” reduction from uniformity
testing to monotonicity testing: given samples from an arbitrary distri-
bution p ∈ ∆k, we can obtain samples from a distribution Φ(p) ∈ ∆k′

such that (i) Φ(p) ∈ P↘
k′ whenever p = uk, and dTV

(
Φ(p),P↘

k′

)
> ε′

whenever dTV(p,uk) > ε. We allow the domain to change a little, from
k to some (not much larger) k′; and similarly for the distance parameter,
originally ε, which can become some other (not much smaller) value ε′.
See Fig. 3.2 for a depiction.
Then, any algorithm T for testing P↘ (with parameters k′, ε′) can be
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∆k

ε
uk

∆k′

ε′
P↘
k′

Figure 3.2: Illustration of what a reduction from uniformity testing to monotonicity
testing is. The uniform distribution is mapped to some monotone distribution, while
distributions far from uniform are mapped to distributions far from monotone.
(Things that are neither uniform nor far from it can be mapped to anything.)

used to test uniformity (with parameters k, ε): convert the samples from
p ∈ ∆k to samples from Φ(p) ∈ ∆k′ , run T on them, and output what
this tester returns. Which is great. . . except that we know that Ω(

√
k/ε2)

samples are required for the latter task; so the sample complexity n of
T must satisfy n(k′, ε′, 1/3) = Ω(

√
k/ε2). We get a lower bound! Whose

meaningfulness, of course, depends a lot on how k′ and ε′ are related to
k and ε.

Let us look at an example, to make things more concrete. Consider
the following (randomized) mapping Ψ: [k]→ [2k]:

Ψ: Given i ∈ [k], return i with probability 1
2 and k + i otherwise.

Applying this to a sample from a probability distribution p ∈ ∆k results
in a sample from Φ(p) over k′ := 2k (where Φ: ∆k → ∆k′), given by

Φ(p)(i) = 1
2p(i mod k) (3.40)

which “duplicates the domain and puts two contiguous copies of p next
to each other” (see Fig. 3.3 for an illustration). Why is it a good thing
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to consider? For a start, if we apply this to the uniform distribution
uk, we end up with Φ(uk) = u2k, the uniform distribution on our new
domain, which is definitely in P↘

2k (the uniform distribution may not
be the most interesting monotone distribution, but it is a monotone
distribution nonetheless). So this fits at least half the bill: as you will
show in Exercise 3.6,E: Show

this. it also fits the other half: distributions which are
ε-far from uniform are mapped to distributions ε′-far from uniform,
where ε′ := ε/2.

Figure 3.3: An example of the reduction outlined above, with a distribution p over
a domain of size k = 20 (left) and the resulting Φ(p) on a domain of size k′ = 2k = 40
on the right.

By the above discussion, the lower bound on uniformity testing
directly implies that monotonicity testing with parameters 2k and ε/2
must have sample complexity Ω(

√
k/ε2). Since constant factors are just

constant factors, this leads to the following:

Theorem 3.10. Every testing algorithm for P↘ (monotonicity) must
have sample complexity n(k, ε, 1/3) = Ω(

√
k/ε2).

(As a side note, this is known to be tight, at least for ε≫
√

log k/k1/4.)
Crucially, reductions comes with another advantage: if we were to
introduce another parameter (focusing on the dependence on δ, for
instance), or work with constrained measurements as in Chapter 4, then
as long as our reduction goes through in the setting considered, we only
need to derive the uniformity testing lower bound in that setting to
immediately get the corresponding lower bound for monotonicity testing
as well. As said earlier, reductions are great to avoid unnecessary work!
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A general result. The above reduction was quite specific to mono-
tonicity testing: ideally, we would like more general statements, allowing
us to derive as many lower bounds as possible while having to think as
little as possible. In the rest of this section, we are going to describe such
a result, which can be seen as some converse to the “testing-by-learning”
baseline from Lemma 1.2. The high-level idea is as follows: suppose we
have two properties P ′ ⊆ P , and we know that P ′ is hard to test. Then
we want to conclude that P , too, is hard to test – at least as hard as P ′.
(In our earlier example, P ′ was uniformity, and P monotonicity: since
the uniform distribution is monotone, the inclusion indeed holds.)

The issue with this conclusion, however, is that it is not true. One
can come up with very simple examples showing it: taking Pk = ∆k,
for example (the trivial property containing all discrete distributions)
and P ′

k = {uk}, we clearly have P ′
k ⊆ Pk, yet Pk can be tested with

exactly 0 samples – while P ′
k requires Ω(

√
k/ε2).

Still, in that counterexample, the property P itself is ginormous
(all distributions!), which somewhat explains the issue: in contrast, the
property P↘ of monotone distributions was much smaller. If we restrict
the statement to “simple enough” properties, then maybe the statement
will hold? E.g., what about properties which can be learned efficiently?
As we will see momentarily, this is indeed the case, albeit for a very
specific sense of “learning” we first need to introduce.

Definition 3.2 (Agnostic learning). A class C = ⋃∞
k=1 Ck is said to be

agnostically learnable with sample complexity n(k, ε, δ) if there is an
algorithm which, given n = n(k, ε, δ) i.i.d. samples from an unknown
arbitrary distribution p ∈ ∆k, outputs a distribution p̂ such that

dTV(p, p̂) ≤ C · inf
q∈Ck

dTV(p,q) + ε

with probability at least 1− δ, where C ≥ 1 is an absolute constant.

In other terms, an agnostic learning algorithm works even in the
unrealizable setting (when p /∈ Ck), and its output is “nearly as good”
as the best candidate from Ck would be. The main result of this section
is the following theorem, which roughly states that “if a property is
easy to learn, then it is as hard to test as its hardest sub-property:”
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Theorem 3.11 (Hardness by Reduction). Fix any property P, and sup-
pose there exists P ′ ⊆ P such that the following holds.

1. Agnostic learning of P (with a given “agnostic constant” C ≥ 1)
has sample complexity at most nL(k, ε, δ);

2. Testing P ′ has sample complexity at least nT (k, ε, δ);

3. There exists a range of parameters k, ε, δ for which learning P is
easier than testing P ′:

nL(k,Cε, δ) ≤ 1
2nT (k, 3Cε, 2δ)

Then, for k, ε, δ in that range of parameters, every testing algorithm
for P must have sample complexity at least 1

2nT (k, 3Cε, 2δ).

Proof. The idea of the proof is quite simple: suppose we have a testing
algorithm A for P with sample complexity nA(k, ε, δ), and let L be the
agnostic learning algorithm for P with sample complexity nL(k, ε, δ)
promised by Item 1. Then we can combine both to obtain a testing
algorithm for P ′: but since P ′ is hard to test, this testing algorithm
cannot be too sample-efficient (it must take at least nT samples), giving
us a lower bound nA + nL ≥ nT . (Note that we only care about
sample complexity, and do not make any assumption on computational
efficiency.)
In more detail, consider the following testing algorithm A′ for P ′: on
input k, ε, δ,

• Run A with parameters k, ε/(3C), δ/2; let b ∈ {0, 1} be the result.

• Run L with parameters k, ε/3, δ/2; let p̂ be the output.

• Check whether dTV(p̂,P ′) ≤ ε/3; let b′ ∈ {0, 1} indicate the result
(this is purely computational and requires no samples from p).

• Return b ∧ b′ (i.e., 1 if, and only if, both b and b′ were 1).

Since both A and L were run with error probability δ/2, by a union
bound they are simultaneously correct with probability at least 1− δ.
Assume hereafter this event holds.
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• If p ∈ P ′, then a fortiori p ∈ P, and A returns b = 1. Moreover,
dTV(p, p̂) ≤ C · 0 + ε/3 = ε/3, so b′ = 1 as well, and overall A′

returns 1.

• Let us now argue the “soundness.” Suppose that T ′ returns 1: this
means that b = 1, and so since A is a testing algorithm for P we
must have dTV(p,P) ≤ ε/(3C). But then, since L is an agnostic
learner for P, we get dTV(p, p̂) ≤ C · dTV(p,P) + ε/3 ≤ 2ε/3.
And finally, since the last check was successful as well (b′ = 1), we
have that dTV(p̂,P ′) ≤ ε/3. By the triangle inequality, it follows
that

dTV
(
p,P ′) ≤ dTV(p, p̂) + dTV

(
p̂,P ′) ≤ ε .

By contrapositive, if dTV(p,P ′) > ε then it must be the case that
T ′ returns 0.

So T ′ is a bona fide testing algorithm for P ′, and its sample complexity
is

n′(k, ε, δ) = nA(k, ε/(3C), δ/2) + nL(k, ε/3, δ/2)
or, reparameterizing,

n′(k, 3Cε, 2δ) = nA(k, ε, δ) + nL(k,Cε, δ) .

But since we know by Item 2 that P ′ is hard to test, we must then have

nA(k, ε, δ) + nL(k,Cε, δ) ≥ nT (k, 3Cε, 2δ)

which by Item 3 implies nA(k, ε, δ) ≥ nT (k, 3Cε, 2δ), and proves the
theorem.

With this theorem in hand, proving a sample complexity lower
bound for a given property P boils down to scouring the literature to
check if (1) P is easy to learn, and (2) something (anything!) inside P
is known to be hard to test. Note that the result may not always be an
optimal lower bound; but it often gets quite close to it, and is a simple
and valuable starting point.

To conclude, let us see a direct application of this theorem to the
property P↘. We can use the fact that monotone distributions can
be agnostically learned with O(log(1 + εk)/ε3) samples (Birgé, 1987;
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Daskalakis et al., 2014) along with our uniformity testing lower bound
(taking P ′

k := {uk}). This lets us derive the same Ω(
√
k/ε2) sample

complexity lower bound for testing P↘ as in Theorem 3.10, with the
additional (small) restriction ε ≫ (log k)/

√
k. Here again, we relied

on the uniformity testing lower bound: it is worth pointing out that
we can (and sometimes must) use other “hard-to-test” sub-properties
than uniformity! We will see such an example in Exercise 3.7, where
you will be asked to prove a lower bound on testing “Poisson Binomial
Distributions.”

3.5.1 Some open questions

We again provide three open problems for this chapter.

Open Question 3.1. The lower bound given in Theorem 3.9 involves
the quantity ∥q̃−max

−4ε ∥2/3, which may seem odd at first sight. However,
there exists a (nearly) matching upper bound for this identity testing
question, with the very-similar-looking quantity ∥q̃−max

−ε ∥2/3. Yet, as
observed in Blais et al. (2019), the factor 4 between the two quantities
can, for some references distributions q, result in a superconstant gap
between open and lower bounds. Can this factor 4 be entirely removed?
If not, what is the tight sample complexity?

Open Question 3.2. The reduction-based approach given in the previ-
ous section (Theorem 3.11) requires the existence of an agnostic learner
for the property of interest, and its proof crucially relies on this. Whether
the existence of a “standard” learner (not agnostic) is sufficient to obtain
an analogous result is an interesting open problem.

Open Question 3.3. The arguments underlying both Theorems 3.5
and 3.7 seem tied to a constant probability of error (e.g., 1/3), and it is
not clear to the author of this survey whether they can be generalized
to obtain a dependence on a vanishing error probability δ. For instance,
getting a tight dependence on δ in Theorem 3.9 would be quite valuable,
in view of the

√
log(1/δ) dependence for uniformity testing.

132



DRAFT

3.6 Historical notes

The contents of Section 3.1 (mostly) follow the exposition of Pollard
(2003) of the celebrated work of Le Cam (e.g., Le Cam (1973)). The χ2

method described (Lemma 3.1) is, to the best of the author’s knowledge,
due to Ingster, and often referred to as the Ingster–Suslina method
after (Ingster and Suslina, 2003). Section 3.2 (mostly) follows the Fano-
based framework of Diakonikolas and Kane (2016), with some simplifi-
cations and (hopefully not) the occasional new typo.

The results discussed in Section 3.3 are due to Valiant (2011); those
from Section 3.4 first appeared in Valiant and Valiant (2014), before
the journal version (Valiant and Valiant, 2017).

The reduction-based method from Section 3.5 was introduced in Canonne
et al. (2016) (the journal version appearing later as (Canonne et al.,
2017)), which also includes a variant for tolerant testing. This is not
the only type of reduction-based method known; for a different flavour
entirely (reduction from communication complexity), the reader is en-
couraged to consult Blais et al. (2019).

Importantly, all methods and results covered in this chapter focused
on minimax testing lower bounds. While they can also be used to
establish sample complexity lower bounds for estimation questions
(since, essentially, “learning is harder than testing,” as briefly discussed
in Chapter 1), there are many situations where the bounds obtained
by these methods will not be optimal for estimation tasks. The reader
interested in estimation versus testing lower bound methods is referred
to the foundational paper of Yu (1997).

3.7 Exercises

Exercise 3.1. Combine (the second part of) Lemma B.4 with (the first
part of) Lemma B.5 to obtain Eq. (3.16) from Eq. (3.7). Use it to
derive Theorem 3.3.

Exercise 3.2. Fix a property Pk ⊆ ∆k of distributions, and denote
by P̃k its “extension to probability measures” (not just probability

133



DRAFT

distributions) defined as follows:

P̃k := { αq : q ∈ Pk, α ≥ 0 } (3.41)

(for instance, for uniformity, Pk = {uk} and P̃k = {α1k}α≥0.) Let p
be a measure (not necessarily a probability measure) such that the
ℓ1 distance between p and P̃k satisfies ℓ1(p, P̃k) > 2ε, and 1/2 ≤
∥p∥1 ≤ 3/2. Defining p′ := p/∥p∥1 (an actual probability distribution),
provide a lower bound on dTV(p′,Pk). Moreover, show that obtaining
n “samples” from the Poisson process with measure p is equivalent to
getting Poisson(n∥p∥1) samples from the distribution p′.

Conclude with how one could use a testing algorithm A for property
Pk given Poisson(n) samples (i.e., in the Poissonized sampling model) to
distinguish between two families of measures (yes- and no-instances) far
in ℓ1 distance, thus justifying the relaxed assumption from Section 3.2.

Exercise 3.3 (⋆). Recall that we defined the no-instances in Section 3.2
by Eq. (3.17) (measures, instead of bona fide probability measures) in
order to guarantee mutual independence of N1, . . . , Nk (conditioned on
b. Check the argument to see which part of the argument would fail if we
had used Eq. (3.11) instead. Then, modify the argument to fix this, and
obtain the same sample complexity lower bound. (Hint: we still have mu-
tual independence of the k/2 random variables (N1, N2), . . . , (Nk−1, Nk)
conditioned on b. Establish the analogue of Eq. (3.20) with N1 = j,N2 =
ℓ instead of N1 = j, and proceed from there.

Exercise 3.4. Verify that applying Theorem 3.9 to (i) the uniform
distribution uk and (ii) the “Zipf” distribution q ∈ ∆k such that
q(i) ∝ 1/

√
i leads, in both cases, to an Ω(

√
k/ε2) sample complexity

lower bound for identity testing.

Exercise 3.5. Check that you can express several of the algorithms
in Section 2.1 as a function of F only (as defined in Section 3.3).
Specifically, verify this for Algorithms 1, 2 and 4. Verify this also
for Algorithm 3, keeping in mind that this algorithm was stated and
analyzed in the Poissonized setting: what does it change?

Exercise 3.6 (⋆). Prove that the mapping Φ defined in Eq. (3.40) does
satisfy the requirements of a reduction, for k′ = 2k and ε′ = ε/2.
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That is, if p ∈ ∆k is ε-far from uk, then Φ(p) ∈ ∆2k is ε′-far from
every distribution q ∈ P↘

2k . (Hint: for any given monotone q, analyse
the distance dTV(Φ(p),q) according to whether q(k) > 1/(2k) or not,
relating this to the set S ⊆ [k] on which p is greater than uk.) Moreover,
show that this loss by a factor 1/2 in the distance is necessary.

Exercise 3.7. A Poisson Binomial Distribution (PBD) with parameters
k and p⃗ = (p1, . . . , pk) is the distribution of the sum of k indepen-
dent Bernoulli random variables X1, . . . , Xk, where Xi ∼ Bern(pi).
(This is a generalization of Binomial distributions, which correspond
to p1 = · · · = pk.) Let P ·⊂⋊

k denote the class of all PBDs with param-
eter k. Using the facts that (1) P ·⊂⋊

k can be agnostically learned with
O(log2(1/ε)/ε2) samples (independent of k) (Daskalakis et al., 2015),
and (2) the “standard” Binomial distribution Bin(k, 1/2) is a PBD,
show that testing P ·⊂⋊

k has sample complexity Ω(k1/4/ε2) (as long as
ε ≥ 1/2O(k1/8)). (Hint: combine the results of Sections 3.4 and 3.5.)

4 Testing with Constrained Measurements
To conclude this survey, we will venture outside the usual sampling
setting, and consider the following question: what happens when the
algorithm does not get to see the n i.i.d. samples?

This may seem absurd at first: well, then, the algorithm is in trouble,
isn’t it? Yet, this type of question does in fact capture many natural
(or interesting) settings. Among others:

Communication constraints: The data is divided among n users,
each holding a single sample1 (observation), and a central server
seeks to perform the testing task. Unfortunately, the users each
have a stringent bandwidth constraint, preventing them from send-
ing their full data point to the server: instead, they are limited to
only send ℓ bits of information.

Limited measurements: Data is hard to measure, and physical de-
vices (or social incentive mechanisms) are imperfect or restricted.

1One could also, of course, consider scenarios where users hold multiple samples
each; it is, however, a little more complicated to handle.
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For instance, it may only be possible to perform a specific type
of one-bit measurement to each data point: fix a threshold, and
only learn whether the value is greater. Or it may be the case
that sensors can be very accurate either for higher temperatures,
or lower ones, but not both: which ones to choose to deploy?

Quantization: Very often, the underlying signal is continuous, but
the measurement is intrinsically discrete. Which quantization
scheme to choose? Should it be chosen once and for all, or should
various quantization schemes be combined, different for distinct
measurements?

Privacy: Sometimes the data is not only distributed across many users,
but also sensitive: e.g., medical data, location information, or
financial records. The users, while willing to send some information
to the central server in order to perform the testing task, seek
to preserve the privacy of their personal data. This is captured,
e.g., by the framework of (local) differential privacy (Dwork et al.,
2006; Kasiviswanathan et al., 2011; Duchi et al., 2013), which
guarantees (in a formal sense) that nobody – even the central
server – can infer too much about any single user’s data point.

Streaming and memory-limited devices: In some cases, the mea-
surements are performed (or the data observed) sequentially by a
device with limited working memory. The algorithm thus cannot
store the totality of the dataset before performing computations
on it, but instead must maintain a small “sketch” of the samples
seen so far, and base its final output on this sketch only.

Noisy channels: We conclude this (non-exhaustive) list with the ex-
ample of settings where the measurements are performed locally,
and sent to a central entity for processing through a noisy commu-
nication channel. Each such transmission can be subject to data
corruption, either through random noise or adversarially.

This is a short concluding chapter, and we will not cover all (or, indeed,
most) of the above applications; the interested reader is referred to Sec-
tion 4.4 for a few pointers. Instead, we will focus on the first setting, that
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of communication constraints, where each of n users observes a single
(independent) sample from the same unknown distribution p ∈ ∆k, but
must abide by a tight communication budget of ℓ≪ log k bits. We will
also focus on upper bounds (algorithms), and on our by-now-familiar
example of uniformity testing.

4.1 Setting(s), and the devil lurking in the de-
tails

Before doing anything else, it is important to define – and discuss – this
communication-limited setting. As mentioned, we have n i.i.d. samples
X1, . . . , Xn drawn from the same unknown distribution p ∈ ∆k. These
samples are distributed among n users, where user i observes sample
Xi and, from it, computes an ℓ-bit message Yi ∈ {0, 1}ℓ and sends it to
the central server.

Upon observing these n messages Y1, . . . , Yn, the central server
(which does not have itself any sample from p) runs an algorithm to
test whether p is uniform, or ε-far from it, and must be correct with
probability 1− δ.

Note that we will implicitly assume afterwards that ℓ ≤ log k,2 since
otherwise each user can simply send their full sample (which only takes
log k bits to encode) to the server, and we are back in our familiar
setting, with a tight Θ(

√
k/ε2) sample complexity bound for uniformity

testing. Given this new communication constraint, we know that the
new bound on n, which is both the number of users and the number of
samples, will be at least Θ(

√
k/ε2); but, most likely, higher (and should

depend on ℓ).

But what do the users know, exactly? We assume that the users
are not given the parameters ε, δ, but know k: since they perform the
measurement, they probably are aware of the domain of the data. They
also know the details the protocol they must follow to compute the
message to send (so, in particular, we can assume they know the total

2To avoid this implicit assumption, we could just replace ℓ by ℓ ∧ log k in every
statement, but that is neither nice to read nor to write.
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Figure 4.1: Depiction of the communication-constrained setting, in its (almost) full,
glorious generality. The orange dashed box highlights that, in the public-coin setting,
the users can jointly randomize their messages even though they do not directly
communicate. The red dotted arrows indicate that, in the (sequentially) interactive
setting, user i observes the messages Y1, . . . , Yi−1, and can choose their own message
Yi based on those (as well as Xi).
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number of users n, if needed), and are given a way to identify themselves
in this protocol (i.e., each user has a unique ID).

But what do the users share, exactly? Now, we said that user i
(for 1 ≤ i ≤ n) computes their message Yi ∈ {0, 1}ℓ from Xi. Let us make
it a bit more formal: user i is equipped with a (possibly randomized)
function Wi : X → {0, 1}ℓ, which is decided ahead of time as part of
the overall protocol the users and server follow; and sets Yi := Wi(Xi).

Note that we allow Wi to differ across users: we do not require that
they all use the same mapping from observation to messages. We also
allow it to be randomized, which, as we will see, can be quite useful: but
this raises the question of which random seed is used. Are W1, . . . ,Wn

randomized independently (i.e., each Wi has its own, “private” random
seed Ri, independent of both the inputs X1, . . . , Xn and of the other
Rj ’s)? Are they randomized jointly (i.e., each Wi has its own, “private”
random seed Ri as before, and a shared random seed U which all users
and the server observe – still independent of the inputs X1, . . . , Xn, of
course)? Or do we go even further, and do we allow Wi to depend on the
messages previously sent, that is, we allow user i to observe Y1, . . . , Yi−1
before sending their own message?

The answer is: any of the above, choose your own adventure. Each
of the 3 settings above captures a different scenario, and has its own
pros and cons:

• Independent randomization (no common random seed, only pri-
vate randomness), and no seeing previous messages: this is the
private-coin setting, sometimes called private-coin “simultaneous
message-passing” (SMP). It is possibly the simplest to implement,
which is a clear advantage; however, it is also the most restrictive,
and thus we can expect the sample complexity to be the worst in
this setting.

• Joint randomization (common random seed available, on top of
private randomness), and no seeing previous messages: this is
the public-coin setting. It makes sense in scenarios where the
server can broadcast a message to all users, or when some earlier
synchronization between devices has been performed ahead of
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time. More permissive than the private-coin setting, so we can
hope to achieve better sample complexity.

• Sequentially interactive: common random seed available, on top
of private randomness, and users get to see the messages sent by
users before them. This is the most challenging to implement, and
can come at the cost of delays and latencies; still, it might also
allow for better sample complexity, so. . . maybe things balance
out?

There are even more permissive settings (e.g., the so-called “blackboard
model,” also known as tree protocols), but this is already quite a lot to
absorb. The three settings discussed above are depicted (with more or
less success) in Fig. 4.1.

But what can the users achieve, exactly? In the next section, Sec-
tion 4.2, we will see a simple, yet powerful technique, simulate-and-infer,
which leads to a O(k3/2/2ℓε2) sample complexity for uniformity testing
in the private-coin setting (Theorem 4.1). Viewed differently, this is

k

2ℓ︸︷︷︸
Cost of distributed

setting

·
√
k

ε2︸︷︷︸
Cost in the

centralized setting

(4.1)

and happens to be optimal (no private-coin protocol for uniformity
testing can do better, as a function of k, ε, ℓ). As a sanity check, the
first factor disappears when ℓ = log k, which is comforting.

We will then see that, somewhat suprisingly, public randomness helps
a lot for testing. In Section 4.3, using the domain compression technique
introduced in Section 2.1.6, we will see that public-coin protocols can
achieve the much better O(k/2ℓ/2ε2) sample complexity for uniformity
testing; or, equivalently, √

k

2ℓ︸ ︷︷ ︸
Cost of distributed

setting

·
√
k

ε2︸︷︷︸
Cost in the

centralized setting

(4.2)
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What is perhaps even more surprising is that this is also optimal,
even when one allows sequentially interactive protocols! So, public
randomness helps; but interaction? Not so much.

Oh, one last detail: to make things slightly more confusing: since
we are in a distributed setting, we now talk about testing protocols, not
algorithms.

4.2 Simulate-and-Infer

We will focus here on proving the upper bound of the following theorem
(the lower bound, unfortunately, would probably require another chapter,
and more coffee than the author currently has at his disposal):

Theorem 4.1. There exists a private-coin testing protocol for unifor-
mity under ℓ-bits communication constraints using n(k, ε, ℓ, 1/3) =
O(k3/2/(2ℓε2)) users. Moreover, this is optimal among all such private-
coin protocols.

To establish this, we will describe a very simple technique, simulate-
and-infer, which essentially allows users to simulate, via a distributed
private-coin protocols, honest-to-goodness new i.i.d. samples from the
actual (unknown) distribution p, even though none of them has the
communication budget to send their actual samples. Now, if it takes
k/2ℓ users to generate a single new sample at the server, then we can
just repeat this in parallel on disjoint groups of users, until the server
has enough samples to run they favorite non-distributed uniformity
testing algorithm from Section 2.1. Hence the name of the technique:
simulate samples, then infer from them. . . which leads to the sample
complexity bound of Eq. (4.1) (and Theorem 4.1).
Let us formally state what this “simulation” technique is about.

Theorem 4.2 (Distributed Simulation). For any 1 ≤ ℓ ≤ log k, there
exists a private-coin protocol which lets the server simulate an expected
n′ ≍ n2ℓ/k i.i.d. samples from an unknown distribution p ∈ ∆k, given
the ℓ-bit messages from n users, each holding an independent sample
from this p.
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We will not prove this theorem in detail, but instead give the
main idea, starting with the case ℓ = 1, showing how to generate one
sample from n = 2k users. The generalisation to ℓ ≥ 2 is then a little
cumbersome, but relatively straightforward: see Exercise 4.3.

Start by partitioning these 2k users in pairs: say, users 2i− 1 and
2i, for 1 ≤ i ≤ k. Pair i will be “assigned” element i of the domain, and
the one-bit message they will send are just the indicators

Y2i−1 := 1{X2i−1 = i}, Y2i := 1{X2i = i}

of whether their respective sample fell on their assigned element i. The
server, upon receiving these n = 2k messages, will check the following
two conditions:

• there exists one, and only one, pair (2i− 1, 2i) of users for which
the “even” user sent 1 (Y2i = 1); and

• for this pair (2i− 1, 2i), the “odd” user sent 0 (Y2i−1 = 1).

If those two conditions do not simultaneously hold (either at least two
even users sent 1, or the odd user from the pair sent 1 as well), then the
server aborts (does not output any sample, but outputs, say, ⊥ instead).
Otherwise, the server outputs i as its sample. This procedure may seem
arbitrary, but it is then not too hard to check that the probability that
i ∈ [k] is output is then given by

Pr[output is i] = p(i)
∏

1≤j≤k
j ̸=i

(1−p(j))·(1−p(i)) = p(i)
k∏
j=1

(1−p(j)) (4.3)

where (a) the first term, p(i), is the probability that user 2i sends 1,
(b) the second term, ∏j ̸=i(1 − p(j)), is the probability that no other
user 2j sends 1, and (c) the last term, 1− p(i), is the probability that
user 2i− 1 sends 0.

Squinting a bit at Eq. (4.3), we see that Pr[output is i] ∝ p(i)
for every i ∈ [k], since ∏k

j=1(1 − p(j)) does not depend on i. This is
encouraging! This means that, conditioned on outputting something,
the server outputs a sample from the right distribution.
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To conclude, it only remains to show that the probability to output
something (which, by summing Eq. (4.3) over i ∈ [k], is exactly this
quantity ∏k

j=1(1 − p(j))) is not too bad, say, at least a constant. So
we need a good lower bound: using the rabbit-out-of-a-hat inequality
1− u ≥ 1/4u (which holds for 0 ≤ u ≤ 1/2), we can write

k∏
j=1

(1− p(j)) ≥
k∏
j=1

1
4p(j) = 1

4 (4.4)

as long as ∥p∥∞ ≤ 1/2. Which we do not know. But we can enforce it,
using private randomness from each user, and a factor 2 in the number
of users: namely, start by mapping p ∈ ∆k to Φ(p) ∈ ∆2k, via the
simple randomized mapping Ψ which, on input i ∈ [k], returns either i
or i+ k, each with probability 1/2. This only needs private randomness
from each user, preserves the total variation distances, and does not
require any knowledge of p; but now, ∥Φ(p)∥∞ = ∥p∥∞/2 ≤ 1/2, so
the above argument goes through – only replacing k by 2k (and so,
n = 2k users by 4k users).

What we showed can be summarized as follows:

Lemma 4.3 (Distributed Simulation, Baby Version). There exists a
private-coin protocol which lets the server simulate an expected n′ ≥
1
4
⌊
n
4k
⌋

i.i.d. samples from an unknown distribution p ∈ ∆k, given the
1-bit messages from n users, each holding an independent sample from
this p.

4.3 Random hashing and domain compression

We have now seen a general technique to obtain private-coin protocols
under communication constraints. What about public-coin protocols?
How do we take advantage of this common random seed the users have
access to? Ironically, the answer to this can be found nearly a hundred
pages ago, in Section 2.1.6; and, more specifically, Theorem 2.12, which
will allow us to establish (the upper bound of) the following result:

Theorem 4.4. There exists a public-coin testing protocol for unifor-
mity under ℓ-bits communication constraints using n(k, ε, ℓ, 1/3) =
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O(k/(2ℓ/2ε2)) users. Moreover, this is optimal, even among interactive
protocols.

Recall that the “domain compression” technique described in Theo-
rem 2.12 lets us trade distance for domain size: namely, we can replace
distance ε but domain size k by distance ε′ ≍ ε

√
L/k but domain size L,

for any 2 ≤ L ≤ k of our choosing.3 Since each user has ℓ bits to send,
it is natural to set L := 2ℓ: this way, they have enough communication
budget to send their full induced sample from this new domain, after
which the server can run, again, its favorite (non-distributed) uniformity
testing algorithm from Section 2.1 on the n samples over [L], with
distance parameter ε′.
Doing so, what we get is a sample complexity

n ≍
√
L

ε′2 ≍
k

ε2
√
L

= k

ε22ℓ/2 (4.5)

which is exactly what we were after. We are done!

4.3.1 Some open questions

As before, we discuss three open problems related to this chapter’s
contents.

Open Question 4.1. This chapter focused on “hard” constraints: for
instance, bandwidth constraints where a given user cannot send more
than ℓ bits, or (local) privacy constraints where a user’s message must
satisfy a stringent privacy constraint. One could try and generalize this
to soft constraints, modelling this by a suitable (application-dependent?)
cost function, where for instance sending ℓ bits has a cost cost(ℓ), and the
objective is to minimize the total cost. (The “hard constraint” setting
then corresponding to a threshold cost function, going from 0 to ∞.)

Open Question 4.2. Another interesting direction, briefly touched
upon in Exercise 4.4, is that of heterogeneous constraints, where each
user comes with a different constraint (possibly qualitatively different).

3Ignoring some technical details, as this is only guaranteed to hold with constant
probability and thus requires some amplification by repetition (losing a constant
factor in the sample complexity), as in Section 2.1.6.
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For instance, a subset of users might have privacy constraints, some
others bandwidth limitations, and a third group be subject to noisy
communication channels. Can one obtain general algorithmic techniques
to handle these in a unified fashion?

Open Question 4.3. To conclude, a very concrete open question: what
if the various parameters of the problem are known to the server, but
not to the users? In the case of distribution testing (esp. uniformity
testing), this typically will be the domain size k: note that all techniques
covered in this chapter (Simulate-and-Infer and Domain Compression)
did require knowing k. But what can be done if the users only have a
very loose bound on k, or, worse, no a priori knowledge of it at all?

4.4 Historical notes

Most of the material covered or hinted at in this last chapter can be
found in the sequence of papers Acharya et al. (2020c), Acharya et al.
(2020d), and Acharya et al. (2021a), as well as (for the interactive
setting specifically) in Acharya et al. (2022) and Acharya et al. (2020b).
Beyond this line of work (with which, for obvious reasons, the author
of this survey is quite familiar), there is an extensive recent body of
work addressing this type of information or measurement constraint
in the context of estimation (learning) tasks; see, e.g., Zhang et al.
(2013), Garg et al. (2014), Shamir (2014), Braverman et al. (2016), Ye
and Barg (2018), Duchi et al. (2018), Acharya et al. (2019), Duchi and
Rogers (2019), Butucea et al. (2020), and Barnes et al. (2020) for some
representative papers. Focusing on distribution testing, Diakonikolas
et al. (2019a) and Amin et al. (2020) and Berrett and Butucea (2020)
consider goodness-of-fit testing under, respectively, communication or
memory constraints, and local privacy constraints. Fischer et al. (2018)
and Meir et al. (2019) focus on uniformity testing in a (slightly different)
distributed model, as well as on the power of local rules where each
user may hold several samples but is constrained to apply a specific
binary test to them (the server then aggregating all those outputs using
a simple decision rule, such as AND or MAJORITY).

An extension of the Domain Compression Lemma (DCL) accounting
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for the amount of public randomness available (length of the common
randomness seed), and providing a tight trade-off with respect to this
extra parameter as well was obtained in Acharya et al. (2020a). The DCL
itself found applications beyond the constrained measurements described
here, and was recently used to obtain uniformity testing algorithms
under two notions of differential privacy called pan-privacy (Amin et al.,
2020) and shuffle privacy (Balcer et al., 2021; Canonne and Lyu, 2022),
enabling one to easily obtain public-coin algorithms from private-coin
ones.

The Simulate-and-Infer technique discussed in Section 4.2 is not
specific to testing, and was also recently leveraged for nonparametric
estimation (i.e., learning of continuous Besov densities) in Acharya et al.
(2021b).

4.5 Exercises

Exercise 4.1. Verify that the error amplification technique discussed
in Lemma 1.1 still goes through in the communication-constrained
distributed setting.

Exercise 4.2. Verify that the reduction from identity to uniformity
testing discussed in Section 2.2.3 still goes through in the communication-
constrained distributed setting, both in the private- and public-coin
settings. Do the users need to know the reference distribution q?

Exercise 4.3 (⋆). Extend the argument of Lemma 4.3 to ℓ ≥ 1, to
establish the more general Theorem 4.2. (Hint: suppose that 2ℓ − 1
divides k, and partition the domain in m := k/(2ℓ − 1) sets. Each pair
of users is now “assigned” one of these sets.)

Exercise 4.4 (⋆⋆). Extend the argument of Theorem 4.2 further to
apply to the case where user has a communication constraint ℓi (het-
erogeneous constraints among users). Establish an analogous bound,
with 2ℓ replaced by 1

n

∑n
j=1 2ℓj . (Hint: consider a dyadic partition of

the domain [k]. It should work.)
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A Some good inequalities
We only mention here a few good bounds that we found to be useful,
and sufficient in many or most settings. There are, of course, many
others, and many refinements or variants of the bounds we present here.
We refer the reader to, e.g., Vershynin (2018, Chapter 2) or Boucheron
et al. (2013) for a much more comprehensive and insightful coverage.

We start with the mother of all concentration inequalities, Markov’s
inequality:
Theorem A.1 (Markov’s inequality). Let X be a non-negative random
variable with E[X] <∞. For any t > 0, we have

Pr[X ≥ t] ≤ E[X]
t

Applying this to (X − E[X])2, we get
Theorem A.2 (Chebyshev’s inequality). Let X be a random variable
with E

[
X2] <∞. For any t > 0, we have

Pr[|X − E[X]| ≥ t] ≤ Var[X]
t2

By applying Markov’s inequality to the moment-generating function
(MGF) of ∑n

i=1Xi in various ways, one can also obtain the following
statements:
Theorem A.3 (Hoeffding bound). Let X1, . . . , Xn be independent ran-
dom variables, where Xi takes values in [ai, bi]. For any t ≥ 0, we
have

Pr
[
n∑
i=1

Xi >
n∑
i=1

E[Xi] + t

]
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
(A.1)

Pr
[
n∑
i=1

Xi <
n∑
i=1

E[Xi]− t
]
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
(A.2)
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Corollary A.4 (Hoeffding bound). Let X1, . . . , Xn be i.i.d. random vari-
ables taking value in [0, 1], with mean µ. For any γ ∈ (0, 1] we have

Pr
[∣∣∣∣∣ 1n

n∑
i=1

Xi − µ
∣∣∣∣∣ > γ

]
≤ 2 exp

(
−2γ2n

)
(A.3)

Theorem A.5 (Chernoff bound). Let X1, . . . , Xn be independent random
variables taking value in [0, 1], and let P := ∑n

i=1 E[Xi] For any γ ∈ (0, 1]
we have

Pr
[
n∑
i=1

Xi > (1 + γ)P
]
< exp

(
−γ2P/3

)
(A.4)

Pr
[
n∑
i=1

Xi < (1− γ)P
]
< exp

(
−γ2P/2

)
(A.5)

In particular, if X1, . . . , Xn are i.i.d. with mean µ, then for any γ ∈ (0, 1]
we have

Pr
[∣∣∣∣∣ 1n

n∑
i=1

Xi − µ
∣∣∣∣∣ > γµ

]
≤ 2 exp

(
−γ2nµ/3

)
(A.6)

As a rule of thumb, the “multiplicative” (Chernoff) from Theo-
rem A.5 is preferable to the “additive” bound (Hoeffding) from Corol-
lary A.4 whenever µ := P/n ≪ 1. In case one only has an upper or
lower bound on the quantity P = ∑n

i=1 E[Xi], the following version of
the Chernoff bound can come in handy:
Theorem A.6 (Chernoff bound (upper and lower bound version)). In the
setting of Theorem A.5, suppose that PL ≤ P ≤ PH . Then for any
γ ∈ (0, 1], we have

Pr
[
n∑
i=1

Xi > (1 + γ)PH
]
< exp

(
−γ2PH/3

)
(A.7)

Pr
[
n∑
i=1

Xi < (1− γ)PL
]
< exp

(
−γ2PL/2

)
(A.8)

Theorem A.7 (Bernstein’s inequality). Let X1, . . . , Xn be independent
random variables taking values in [−a, a], and such that E

[
X2
i

]
≤ vi for

all i. Then, for every t ≥ 0, we have

Pr
[∣∣∣∣∣

n∑
i=1

Xi −
n∑
i=1

E[Xi]
∣∣∣∣∣ ≥ t

]
≤ exp

(
− t2

2(∑n
i=1 vi + a

3 t)

)
.
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In particular, if X1, . . . , Xn are i.i.d. with mean µ and E
[
X2

1
]
≤ v, then

for any γ ≥ 0 we have

Pr
[∣∣∣∣∣ 1n

n∑
i=1

Xi − µ
∣∣∣∣∣ ≥ γ

]
≤ exp

(
− γ2n

2(v + a
3γ)

)
.

Observe that this tail bound exhibits both behaviours: it decays in
a subgaussian fashion for small γ, before switching to a subexponential
tail bound for large γ.

We conclude this section by providing a very convenient bound,
specifically for Poisson random variables, which shares the same “two-
tail” behaviour:

Theorem A.8 (Poisson concentration). Let X be a Poisson(λ) random
variable, where λ > 0. Then, for any t > 0, we have

Pr[X ≥ λ+ t ] ≤ e− t2
2λ
ψ( t

λ ) ≤ e− t2
2(λ+t) (A.9)

and, for any 0 < t < λ,

Pr[X ≤ λ− t ] ≤ e− t2
2λ
ψ(− t

λ ) ≤ e− t2
2(λ+t) , (A.10)

where ψ(u) := 2 (1+u) ln(1+u)−u
u2 for u ≥ −1. In particular, for any t ≥ 0,

Pr[ |X − λ| ≥ t ] ≤ 2e− t2
2(λ+t) . (A.11)

B Metrics and divergences between probabil-
ity distributions

We here focus on distributions over discrete domains; all of the stated
results do extend to the continuous settings, replacing ratios by Radon–
Nikodym derivatives and sums by suitable integrals.

We briefly recall the definitions of the distance measures between
probability distributions we will use here. This list is by no means
exhaustive, of course: there be (many more) dragons.
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Definition B.1. For two probability distributions p1,p2 over the same
domain X , the Kullback–Leibler divergence (in nats), chi–square diver-
gence, and Hellinger distance are given by

D(p1∥p2) =
∑
x∈X

p1(x) ln p1(x)
p2(x) (B.1)

χ2(p1 || p2) =
∑
x∈X

(p1(x)− p2(x))2

p2(x) (B.2)

dH(p1,p2) = 1√
2
∥√p1 −

√p2∥2 , (B.3)

with the convention that 0 ln 0 = 0. Note that the first two are not
symmetric, do not satisfy the triangle inequality, and are unbounded.

Importantly, TV distance, squared Hellinger, KL divergence, and
chi-square divergence are all instances of f -divergences, which directly
endows them with many desirable properties – among which joint
convexity and the data-processing inequality (Fact 1.1).

Squared Hellinger, KL divergence, and chi-square divergence also
“tensorize” nicely: specifically, for any product probability distributions
p1 ⊗ · · · ⊗ pn and q1 ⊗ · · · ⊗ qn, we have

D(p1 ⊗ · · · ⊗ pn∥q1 ⊗ · · · ⊗ qn) =
n∑
i=1

D(pi∥qi) (B.4)

χ2(p1 ⊗ · · · ⊗ pn || q1 ⊗ · · · ⊗ qn) =
n∏
i=1

(
1 + χ2(pi || qi)

)
− 1 (B.5)

and

dH(p1 ⊗ · · · ⊗ pn,q1 ⊗ · · · ⊗ qn)2 = 1−
n∏
i=1

(1− dH(pi,qi)2)

≤
n∑
i=1

dH(pi,qi)2 ; (B.6)

while TV distance is much less cooperative, only giving the weaker

dTV(p1 ⊗ · · · ⊗ pn,q1 ⊗ · · · ⊗ qn) ≤
n∑
i=1

dTV(pi,qi) (B.7)
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(typically much looser, loosing up to a factor
√
n compared to what one

would get via, say, Hellinger).
We now state (and prove) several useful lemmas relating these

various distance measures.

Lemma B.1. For every p,q on X ,

dH(p,q)2 ≤ dTV(p,q) ≤
√

2dH(p,q) .

Proof. Let us first prove the left side. Using a−b = (
√
a−
√
b)(
√
a+
√
b),

dH(p,q)2 = 1
2
∑
x∈X

(√
p(x)−

√
q(x)

)2

≤ 1
2
∑
x∈X

∣∣∣∣√p(x)−
√

q(x)
∣∣∣∣(√p(x) +

√
q(x)

)
= 1

2
∑
x∈X
|p(x)− q(x)| = dTV(p,q) .

For the right side, we have, by Cauchy–Schwarz and then using the
identity 2(a+ b) = (

√
a+
√
b)2 + (

√
a−
√
b)2,

dTV(p,q) = 1
2
∑
x∈X

∣∣∣∣√p(x)−
√

q(x)
∣∣∣∣(√p(x) +

√
q(x)

)

≤ 1
2

√√√√∑
x∈X

(√
p(x)−

√
q(x)

)2
√√√√∑
x∈X

(√
p(x) +

√
q(x)

)2

= 1√
2

dH(p,q)

√√√√∑
x∈X

(
2(p(x) + q(x))−

(√
p(x)−

√
q(x)

)2
)

= dH(p,q)
√

2− dH(p,q)2 ,

which implies the (slightly weaker) inequality we wanted to show.

Lemma B.2. For every p,q on X ,

dTV(p,q)2 ≤ 1
4χ

2(p || q) .
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Proof. By Cauchy–Schwarz,

dTV(p,q) = 1
2
∑
x∈X
|p(x)− q(x)|

≤ 1
2

√√√√∑
x∈X

(p(x)− q(x))2

q(x)

√∑
x∈X

q(x)

= 1
2

√
χ2(p || q) .

Lemma B.3 (Pinsker’s Inequality). For every p,q on X ,

dTV(p,q) ≤
√

1
2D(p∥q) .

This inequality is “good enough” for most situations; nonetheless,
we state here a lesser known, but stronger result, for when it is not:

Lemma B.4 (Bretagnolles–Huber Bound). For every p,q on X ,

dTV(p,q) ≤
√

1− e−D(p∥q) . (B.8)

In particular, as
√

1− e−x ≤ 1− 1
2e

−x for x ≥ 0, this implies

dTV(p,q) ≤ 1− 1
2e

−D(p∥q) . (B.9)

We refer the reader to Canonne (2022) or Tsybakov (2009, Sec-
tion 2.4.1) for a proof and discussion of this inequality, due to Bretag-
nolle and Huber (1978).

Lemma B.5. For every p,q on X ,

D(p∥q) ≤ ln
(
1 + χ2(p || q)

)
≤ χ2(p || q)

Proof. The second inequality follows from the standard convexity in-
equality ln(1 + x) ≤ x (for x > −1), so it suffices to prove the first. To
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do so, observe that

D(p∥q) =
∑
x∈X

p(x) ln p(x)
q(x)

≤ ln
∑
x∈X

p(x)2

q(x) (Jensen’s inequality)

= ln
(
1 + χ2(p || q)

)
,

where we used concavity of the logarithm.

Note that Lemmas B.3 and B.5 together imply a weaker version
of Lemma B.2, losing a factor 2.

C Poissonization
In the usual, standard sampling setting, the algorithm is given n i.i.d.
samples from a distribution p ∈ ∆k. This is sometimes called multi-
nomial sampling setting, as then the vector of counts (N1, . . . , Nk)
(where N i is the number of times we see element i ∈ [k] among the
n samples) follows a multinomial distribution with parameters n and
(p(1), . . . ,p(k)).

An unfortunate aspect of this is that those N1, . . . , Nk are not
independent: each of them is marginally a Binomial random variable,
with N i ∼ Bin(n,p(i)), but those are dependent, since for instance
N1+· · ·+Nk = n.1 In turn, this can make many computations annoying
or complicated.

A possible solution to this is to work instead in the Poissonized
sampling setting, where the algorithm is given a random number of
samples. Specifically, the sampling process is as follows. Given an integer
n,

1. Draw N ∼ Poisson(n);

2. Draw N i.i.d. samples X1, . . . , XN from p;

3. Provide X1, . . . , XN to the algorithm.
1More specifically, the N i’s are negatively associated; see Definition 2.3.
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Equivalently, assume we have an infinite sequence (Xi)∞
i=1 of i.i.d. sam-

ples from p, and the algorithm is provided the first N of them, where
N ∼ Poisson(n) and (Xi)∞

i=1 are mutually independent. We can then
define a property testing in the Poissonized setting exactly as in Defi-
nition 1.2, except for the fact that the “sample complexity” n(k, ε, δ)
is now referring to the parameter of N (the Poisson random variable
which is the number of samples actually given to the algorithm).

The reasons to do this are summarized in the following fact.

Fact C.1. Fix any p ∈ ∆k, and let (N1, . . . , Nk) denote the vector of
counts among the samples in the Poissonized sampling setting with
parameter n. Then (1) for every i ∈ [k], Ni ∼ Poisson(np(i)), and
(2) N1, . . . , Nk are mutually independent.

Moreover, tail bounds on Poisson concentration (Theorem A.8)
imply that

Pr
[
n

2 ≤ N ≤
3n
2

]
≥ 1− 2e−n/12 (C.1)

which is at least 1− δ if n ≥ 12 ln(2/δ). This can be used to show the
following:

Lemma C.1. Suppose there exists a tester for property P in the Pois-
sonized setting with sample complexity n ·⊂⋊(k, ε, δ). Then there exists a
tester for property P (in the standard sampling setting) with sample
complexity n(k, ε, δ) = max

(
3
2 · n

·⊂⋊(k, ε, δ/2), 18 ln(4/δ)
)
.

We also have a converse statement:

Lemma C.2. Suppose there exists a tester for property P (in the
standard sampling setting) with sample complexity n(k, ε, δ). Then
there exists a tester for property P in the Poissonized setting with
sample complexity n ·⊂⋊(k, ε, δ) = max(2 · n(k, ε, δ/2), 12 ln(4/δ)).

These two lemmas allow use to transfer upper and lower bounds
establish the Poissonized sampling setting to the standard one, and vice
versa. For more on Poissonization, see, e.g., Valiant (2011, Section 4.3)
and references within, or Canonne (2020b, Appendix D.3).
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