
compx270 Solution 9: Streaming and Sketching II s2 2024

Warm-up

Problem 1. Discussion: what are the parallels between Bloom filters and Count-
MinSketch?

Solution 1. One can think of CountMinSketch as a “counting” version of a Bloom
Filter.

• Bloom filter: we set bits to 1 in each of the T hash tables, and report the AND;

• CountMinSketch: we get counts in each of the T hash tables, and report the
MIN;

AND(bits) = MIN(bits), so you can see the Bloom filter as reporting the MIN too
(but capping the counts at 1).

Problem 2. Prove the following fact about “monotonicity of ℓp norms”: if x ∈ Rd,
then ∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1. Show, in addition, that ∥x∥2 ≥ ∥x∥1/

√
d. When are

these inequalities tight?
((⋆) More generally: if 1 ≤ p ≤ q ≤ ∞, then ∥x∥q ≤ ∥x∥p.)

Solution 2. For the first half of the inequality:

∥x∥2
∞ = (max

i∈[d]
xi)

2 ⩽
d

∑
i=1

x2
i = ∥x∥2

2.

For the second half, i.e., to show ∥x∥2 ⩽ ∥x∥1, we have

d

∑
i=1

x2
i = ∑

i=j:i∈[d],j∈[d]
|xi| · |xj| ⩽

d

∑
i=1

d

∑
j=1
|xi| · |xj| = ∥x∥2

1.

Lastly, to show ∥x∥2 ⩾ ∥x∥1/
√

d, we have by the Cauchy-Schwarz inequality (be-
tween x and y = (1, 1, . . . , 1)),

∥x∥1 =
d

∑
i=1
|xi| · 1 =

d

∑
i=1
|xi| · |yi| ⩽ ∥x∥2 · ∥y∥2 = ∥x∥2 ·

√√√√ d

∑
i=1

1 = ∥x∥2 ·
√

d.

For more general cases, see, e.g., the answer: https://math.stackexchange.com/a/483825.

Problem 3. Discuss the advantages and disadvantages of Misra-Gries versus
CountMinSketch when used in the cash register model: speed, memory, approxi-
mation. Can you think of a situation where having an overestimate (CountMinSketch)
is better than an underestimate (Misra-Gries)?

1

https://math.stackexchange.com/a/483825

compx270 Solution 9: Streaming and Sketching II s2 2024

Solution 3. CountMinSketch might use more memory but the runtime is actually
much faster in some cases. In addition, it provides a linear sketch.

For Misra-Gries , the algorithm needs to first look up in the set (using hash
table this will be O(1) each time in expectation) and then sometimes it needs to
decrement everything in the array, and that takes O(k) = O

(
1
ε

)
time.

For CountMinSketch , each time you only need to look up O
(
log n

δ

)
and up-

date O
(
log n

δ

)
elements of the array.

For the last part, consider the task of finding heavy hitters, Hε := {j ∈ [n] :
f j ⩾ ε · m}: that is, outputting a set Ĥ containing all ε-heavy hitters, and not too
many other elements. Having an overestimate means that setting the threshold
to ε · m ⩽ f j ⩽ f̂ j suffices to have Hε ⊆ Ĥ; in addition (this is only an informal,
rule-of-thumb idea, not necessarily always true) one can hope/expect that there
will be fewer false positives (|Ĥ| not too large), as the threshold to be included is
εm, compared to a smaller threshold such as ε

2 m when solving the Heavy Hitters
problem with Misra-Gries.

Problem 4. Check your understanding: why are we using a hash function g in the
BKJST algorithm? What would happen if we were to store j in the bucket B, instead
of g(j)?

Solution 4. Recall the space complexity:

O
(

log n +
1
ε2

(
log

1
ε
+ log log n

))
.

If we store j directly rather g(j), then we need log n per item which gives a bound
of 1

ε2 log n since |B| = O
(

1
ε2

)
.

Problem solving

Problem 5. For the same space budget s (ignoring the constants in the O(·)’s), are
the theoretical guarantees provided by CountMinSketch better, worse, or incom-
parable to those of CountSketch?

Solution 5. Note the difference between the two guarantees, ignoring the constant
factors and the dependence on the probability of failure δ.

• CS (CountSketch):

s1 = O
(

1
ε2 log(mn)

)
⇒ | f̂ j − f j| ⩽ ε · ∥ f ∥2.

• CMS (CountMinSketch):

s2 = O
(

1
ε

log(mn)
)
⇒ | f̂ j − f j| ⩽ ε · ∥ f ∥1.

2

compx270 Solution 9: Streaming and Sketching II s2 2024

Note the relation: ∥ f1∥√
n ⩽ ∥ f2∥ ⩽ ∥ f1∥.

Say we fix the same s = s1 = s2. This then gives s1 = s2 = 1
ε2 log(mn) and thus

CS : | f̂ j − f j| ⩽ ε · ∥ f ∥2.

CMS : | f̂ j − f j| ⩽ ε2 · ∥ f ∥1.

Comparing Err(CS) = ε · ∥ f ∥2 and Err(CMS) = ε2 · ∥ f ∥1, we have that

ε · ∥ f1∥√
n

⩽ ε · ∥ f ∥2 ⩽ ε · ∥ f1∥.

Err(CMS)
ε
√

n
⩽ Err(CS) ⩽

Err(CMS)
ε

.

Consider two cases here:
1. When ε ≪ 1/

√
n, then Err(CMS) ⩽ ε

√
n · Err(CS) ≪ Err(CS). So CMS is

better when ε is very small.
2. But if ε is constant and n becomes big, and ∥ f ∥2 is well spread out (say it’s

uniform, then f j =
m
n), we have that

∥ f ∥2 =

√
n

∑
i=1

(m
n

)2
=

m√
n
≪ m = ∥ f ∥1.

In this case, Err(CMS) = ε · ∥ f ∥2 = Θ(∥ f ∥2) = Θ
(

m√
n

)
≪ Θ(m) = Θ(∥ f ∥1) =

ε2 · ∥ f ∥1 = Err(CS).
Takeaway: they each have their own favored regime.

Problem 6. Generalise the analysis of the CountMinSketch algorithm to show it
works in the strict turnstile model, where updates of the stream are of the form
(j, c) ∈ [n]× {−B, . . . , B} (can be negative) but one must have f j ≥ 0 at every time.
Check the guarantees you can provide on the output f̂ . Does the analysis extend to
the general turnstile model, where f j can become negative?

Solution 6. (Proof sketch: for more details, see, e.g., https://www.sketchingbigdata.
org/fall20/lec/notes.pdf, Section 4.1.1.)

Since f j ⩾ 0 at all times, the whole argument can go through as is. Note however
that it doesn’t work when f j < 0, as Markov inequality needs the condition that the
random variable is non-negative: this rules out the general turnstile model.

Problem 7. Show that the Misra-Gries algorithm is a sketching algorithm: namely,
suppose we run Misra-Gries (with the same parameter k = ⌈1/ε⌉) on two streams
σ1, σ2, getting output vectors f̂ (1), f̂ (2). Combine then as follows:

1. Set f̂ ← f̂ (1) + f̂ (2)

2. If f̂ has more than k non-zero entries, let v > 0 be the value of the (k + 1)-th,
in non-increasing order.

3

https://www.sketchingbigdata.org/fall20/lec/notes.pdf
https://www.sketchingbigdata.org/fall20/lec/notes.pdf

compx270 Solution 9: Streaming and Sketching II s2 2024

3. Set f̂ j ← max(f̂ j − v, 0) for all j

Argue that f̂ has at most k non-zero entries.a)

Show that the sketch f̂ provides the original Misra-Gries estimation guaran-
tees, for the combined stream σ1 ◦ σ2.

b)

Is this sketch a linear sketch?c)

Solution 7. Note the the guarantee of MG’s algorithm is a bit stronger than stated,
which will be handy in this proof. Denote total number of counts in the k = ⌈1/ε⌉
arrays as n̂1 (resp. n̂2) for stream σ1 (resp. σ2) after running MG. We in fact have
(subtracting one from all k + 1 when k array is full; and at the end n̂1 remains)

f (1)j −
n1 − n̂1

k + 1
⩽ f̂ (1)j ⩽ f (1)j .

n1 = |σ1|, n2 = |σ2|. So the error for is bounded by n1−n̂1
k+1 and n2−n̂2

k+1 respectively.
Combining the two we have that the error is at most

⩽
n1 − n̂1

k + 1
+

n2 − n̂2

k + 1
.

Factoring in the subtraction step of v. We have that the error would increase to be

⩽
n1 − n̂1

k + 1
+

n2 − n̂2

k + 1
+ v.

What is left is to bound v. Denote n̂12 as the number of counts left in k array after
the subtraction of v. Since we are subtracting for k + 1 array all v (and potentially
more, but others could be starting at 1; the (k + 2)-th and above entries), we have
that

n̂1 + n̂2 − n̂12 ⩾ (k + 1) · v.

Thus, v ⩽ n̂1+n̂2−n̂12
k+1 . Combining both, the error is at most

n1 − n̂1

k + 1
+

n2 − n̂2

k + 1
+

n̂1 + n̂2 − n̂12

k + 1
=

n1 + n2 − n̂12

k + 1
=

n12 − n̂12

k + 1
.

(Proof credit: Theorem 2.2 of https://users.cs.duke.edu/ pankaj/publications/papers/merge-
summ.pdf.)

Advanced

Problem 8. Modify the CountMinSketch algorithm so that it outputs a list of the
ℓ1 Heavy Hitters in the strict turnstile model: that is (similarly to an exercise in
Tutorial 8), given parameter ε ∈ (0, 1], it should output a set H ⊆ [n] such that
Hε(σ) ⊆ H ⊆ Hε/2(σ), where

Hε(σ) = {j ∈ [n] : f j ≥ ε · ∥ f ∥1}

4

https://users.cs.duke.edu/~pankaj/publications/papers/merge-summ.pdf
https://users.cs.duke.edu/~pankaj/publications/papers/merge-summ.pdf

	Warm-up
	Problem solving
	Advanced

