
compx270 Solution 8: Streaming and Sketching I s2 2024

Warm-up

Problem 1. Go through the “median-of-means” proof for the Morris counter, to
prove the statement about the result.

Solution 1. Given that

E[Cn] = n + 1 and Var[Cn] =
n(n− 1)

2
,

the main issue is that E[Cn]2 is at the same order as Var[Cn], which will makes it
hard for Chebyshev’s inequality to get good additive estimate – you get probability
bound of the form

Var[X]

(εE[X])2 =
1
ε2 ,

and for ε ≤ 1, it is a vacuous bound.
Taking a means with repetition of size k can effective bring down the variance

by a factor of 1/k while keeping the mean unchanged. This allows us to get (by
Chebyshev) a (1+ ε)-factor estimate with large (constant) probability: once we have
this, we can use the median trick to boot the constant probability of success to 1− δ.

Problem 2. Instead of using the “median-of-means” trick to boost the accuracy
of the Morris counter, what happens if we were to do the opposite and use the
“mean-of-medians”?

Solution 2. It will not help as the probability that you get good estimate is low to
begin with. So you “expect” to see a lot of bad estimates in your repetition. Taking
a median out of them gives no good statistical guarantee.

Problem solving

Problem 3. Analyse the “careful variant” of the Morris counter, where instead of
doubling C with probability 1/C, we multiply C by 1 + α with probability 1/(αC).

Compute the expectation of C at the end of the algorithm.a)

Compute its variance, and conclude by Chebyshev.b)

Explain how you would set α to get a (1 + ε)-factor estimate of the true count
with probability at least 1− δ using the median trick, and give the resulting
space complexity, almost proving the theorem stated in the lecture (but with a
multiplicative instead of additive log(1/δ).

c)

Explain how you would set α to get a (1 + ε)-factor estimate of the true count
with probability at least 1− δ without using the median trick, and give the
resulting space complexity, actually proving the theorem stated in the lecture
(with an additive log(1/δ)).

d)

1

compx270 Solution 8: Streaming and Sketching I s2 2024

How would you actually implement the increment step (i.e., how, given ran-
dom uniform bits, would you “multiply C by 1+ α with probability 1/(αC)”)?

e)

Solution 3.

Denote Zi the indicator random variable for the event that Ci is increased by
a factor of (1 + α), with probability 1/αCi. So,

Ci+1 = (1 + αZi)Ci.

Plugging into the computation for expectation,

E[Ci+1] = E[E[Ci+1 | Ci]] = E[E[(1 + αZi)Ci | Ci]].

As Ci is fixed in the inner (conditional) expectation, Zi ∼ Bern
(

1
αCi

)
, and thus,

E[(1 + αZi) · Ci | Ci] = E
[(

1 + α · 1
αCi

)
· Ci | Ci

]
= Ci + 1.

Since E[C0] = 1, we can show that (by induction),

E[Cn] = n + 1.

For the variance, we follow the same idea: first, Var[Cn] = E[C2
n] − E2[Cn],

and so all we need to do is to compute E[C2
n]. To do so, rewrite

E[C2
n] = E[E[C2

i+1 | Ci]] = ECi [E[(1 + αZi)
2C2

i | Ci]].

Again, as Ci is fixed in the inner expectation, and since Zi ∼ Bern
(

1
αC

)
(so

that Z2
i = Zi), E[Z2

i | Ci] = E[Zi | Ci] =
1

αCi
, and so

E[(1 + 2αZi + α2Z2
i)C

2
i | Ci] = C2

i + (2 + α) · Ci.

Noting that E[Ci] = i + 1 from before, and as E[C2
0] = 1, we have

E[C2
n] = E[C2

n−1] + (2 + α) · (i + 1) = E[C2
n−2] + 2× (2 + α) · (i + 1).

Unrolling this further, we get that

E[C2
n] = 1 + (2 + α) ·

n−1

∑
i=0

(i + 1) = 1 +
(2 + α) · n(n + 1)

2
,

and so

Var[Cn] = E[C2
n]−E2[Cn] = 1+

(2 + α) · n(n + 1)
2

− (n+ 1)2 =
α

2
·n(n+ 1)−n.

We see that

E[Cn − 1] = n and Var[Cn − 1] =
α

2
· n(n + 1)− n.

a)

2

compx270 Solution 8: Streaming and Sketching I s2 2024

By Chebyshev, we have

Pr[|Cn − 1− n| ⩾ εn] ⩽
Var[Cn − 1]

ε2n2 ,

and we want the RHS to be at most δ. Solving the inequality gives,

α

2
· n(n + 1)− n ⩽ ε2δn2 ⇔ α ⩽

2(ε2δn + 1)
(n + 1)

⇐ α = 2ε2δ ⩽
2(ε2δn + 1)
(n + 1)

.

Plug in δ = 1
4 , so that setting α = ε2

2 is enough. We will use the median trick
on this configuration (run log 1

δ copies and take the median of them). This
gives space complexity (we return to the exponent x, we know that (1+ α)x =
Cn ⩽ m):

O!
((

log
1
δ

)
· log2 log1+α m

)
= O

(
log

1
δ
·
(

log2
log2 m

log2(1 + α)

))
= O

(
log

1
δ
·
(

log log m + log
1
ε

))
.

b)

Set α = 2ε2δ. The space complexity becomes (using log(1 + 2x) ⩾ x, when
x ∈ (0, 1])

log(1+α) n =
log2 n

log2(1 + α)
⩽

log2 n
ε2δ

.

(1 + α)x, storing and return (1 + α)x − 1 at the end suffices. We can cap x’s
growth to

log(1+α) m ⩽
log2 m

ε2δ
,

as n ⩽ m. So, storing x would take at most

log2

(
log2 m

ε2δ

)
= log log m + 2 log

1
ε
+ log

1
δ

bits.

c)

3

compx270 Solution 8: Streaming and Sketching I s2 2024

To sample from Bern(p) for p ∈ [0, 1]. There is one generic approach that
works, though it takes an unbounded number of uniformly random bits.

1: Sample x from Uniform(0, 1).
2: If x < p, return 1. Otherwise return 0.

Of course, this comes with two issues: first, sampling exactly a uniformly ran-
dom continuous variable on [0, 1] requires infinitely many uniformly random
bits. Second, if p is not rational, it’s not even clear how to represent it on a
finite-precision computer, let alone how to store it.
Instead, consider first rounding α to a rational number α′ such that α′ ≤ α <
2α′: this is always possible, by density of the rationals. We will then run the
algorithm with paramater α′ instead of α: this only improves the error bound
as α′ ≤ α, and does not change the space complexity by more than an additive
O(1), as log 1

α′ ≤ log 2
α = 1 + log 1

α .
Since α′ is a rational number and C a power of (1 + α′), the Bernoulli para-
mater pi at step i is of the form

pt =
1

α′C
=

1
α′(1 + α′)ℓ

for some ℓ ≥ 0. This means pt is also a rational, since

α′(1 + α′)ℓ =
ℓ

∑
j=0

(
j
ℓ

)
αj+1

is a sum of (ℓ+ 1) rational numbers (each being an integer power of a ratio-
nal number, times an integer). But sampling from a Bernoulli with rational
parameter can be done efficiently: if p = a

b with a ≤ b, it suffices to draw X
uniformly in {1, . . . , b}, and output 1 iff X ≤ a.

d)

Problem 4. Given a stream σ of length m and ε ∈ [0, 1], let

Hε(σ) = {j ∈ [n] : f j ≥ ε ·m}

denote the set of ε-heavy hitters of σ. Modify the Misra–Gries algorithm to make it
output a set H ⊆ [n] such that Hε(σ) ⊆ H ⊆ Hε/2(σ). (That is, the algorithm outputs
every ε-heavy hitter, and everything it outputs is at least an (ε/2)-heavy hitter.) Your
algorithm should be one-pass, and use space O(log(mn)/ε).

Solution 4. Run algorithm parameter with k = 2/ε. Whatever remains, pick the
ones with f̂i ⩾

ε
2 ·m to form H.

If i ∈ Hε(σ), then fi ⩾ ε ·m, which implies

ε

2
·m ⩽ fi −

ε

2
·m ⩽ f̂i.

So i will be in H by how we form H.

4

compx270 Solution 8: Streaming and Sketching I s2 2024

On the other hand, if i ∈ H, then f̂i ⩾
ε
2 · m, which implies fi ⩾ f̂i ⩾

ε
2 · m. So

i ∈ Hε/2(σ) by definition.
The overall space complexity is

O(k · log(mn)) = O
(

log(mn)
ε

)
.

Problem 5. Consider the following “Bottom-k” algorithm for the Distinct Elements
problem, where k ≥ 1 is a parameter.

1: Pick a hash function h : [n] → [0, 1] from a strongly universal hash family
▷ Technically, from h : [n] → {0, 1/N, 2/N . . . , 1} where N = poly(n) is large
enough to not have to worry about collisions.

2: Set z = (1, 1, . . . , 1) ∈ Rk

3: for all 1 ≤ i ≤ m do
4: Get new element ai ∈ [n] of the stream
5: z← k smallest values among z1, . . . , zk, h(ai)

6: return d̂← k
max(z1,...,zk)

Show that, for k = Θ(1/ε2), the above algorithm returns (1± ε)-estimate of
the number of distinct elements d, with probability at least 99%. (To do so,
define Xi as the indicator that h(ai) <

k
(1+ε)d , and use Chebyshev on ∑i Xi.)

a)

What is the space complexity of the algorithm?b)

Solution 5. a) Throughout the proofs, we assume ε < 1. Denote for i ∈ Distinct(a1, . . . , am),
where aj ∈ [n], Xi = 1{

h(aji
)< k

(1+ε)d

}. aji denotes the actual value aj takes or aj = i.

d

∑
i=1

Xi > k

⇔ at least k (out of d distinct points) of them have h(i) <
k

(1 + ε)d

⇔ max(z1, . . . , zk) <
k

(1 + ε)d

⇔ k
max(z1, . . . , zk)

> (1 + ε)d.

So,
d

∑
i=1

Xi > k⇔ d̂ > (1 + ε)d.

5

compx270 Solution 8: Streaming and Sketching I s2 2024

It remains to analyse Pr
[
∑d

i=1 Xi > k
]
. Since it is strongly universal hash family, it

is marginally “uniform”.1

E

[
d

∑
i=1

Xi

]
=

d

∑
i=1

E[Xi] =
d

∑
i=1

Pr
[

h(i) <
k

(1 + ε)d

]
· 1 =

k
1 + ε

.

Also we have pairwise independence as we are using a strongly universal hash
family, and E[X2

i] = E[Xi] (indicator r.v.), so that

Var

[
d

∑
i=1

Xi

]
=

d

∑
i=1

Var[Xi] =
d

∑
i=1

(E[X2
i]−E[Xi]

2) ⩽
k

1 + ε
.

By Chebyshev,

Pr

[
d

∑
i=1

Xi > (1 + α)
k

1 + ε

]
<

Var
[
∑d

i=1 Xi

]
α2E2

[
∑d

i=1 Xi

] ⩽
k

1+ε

α2
(

k
1+ε

)2 ⩽
1
6

.

Let α = ε and solve the inequality,

k
1+ε

α2
(

k
1+ε

)2 ⩽
1
6
⇔ 6 · 1 + ε

ε2 ⩽ k.

Setting k = 6×
(

1
ε2 +

1
ε

)
= Θ

(
1
ε2

)
suffices to have

Pr

[
d

∑
i=1

Xi > k

]
= Pr[d̂ > (1 + ε)d] ⩽

1
6

. (1)

On the other hand, by the same argument, we have Yi = 1{
h(i)⩽ k

(1−ε)d

}

d̂ < (1− ε)d ⇔ k
max(z1, . . . , zk)

< (1− ε)d

⇔ k
(1− ε)d

< max(z1, . . . , zk)

⇔ at most k− 1 (out of d distinct points) of them have h(i) ⩽
k

(1− ε)d
.

⇔
d

∑
i=1

Yi < k.

Using same argument above, we compute

E

[
d

∑
i=1

Yi

]
=

k
(1− ε)d

· d =
k

1− ε
.

1Ignoring the error incurred due to discretization from [0, 1] to
{

0, 1
N , 2

N , . . . , 1
}

, which is at

most 1
N .

6

compx270 Solution 8: Streaming and Sketching I s2 2024

Var

[
d

∑
i=1

Yi

]
=

d

∑
i=1

Var[Yi] ⩽
k

1− ε
.

By Chebyshev’s inequality,

Pr

[
d

∑
i=1

Yi < (1− α)
k

1− ε

]
⩽

Var
[
∑d

i=1 Yi

]
(

αE
[
∑d

i=1 Yi

])2 .

Setting α = ε,

Pr

[
d

∑
i=1

Yi < k

]
⩽

k
1−ε(

ε k
1−ε

)2 =
1− ε

ε2k
⩽

1
6
⇔ 6

(
1
ε2 −

1
ε

)
⩽ k

Pr

[
d

∑
i=1

Yi < k

]
= Pr[d̂ < (1− ε)d] ⩽

1
6

. (2)

It suffices to have k = Θ
(

1
ε2

)
. By a union bound combining (1) and (2), we have

that
Pr[(1 + ε)d > d̂ > (1− ε)d] ⩾ 1− 1

3
.

b) This will depend on the value of k = Θ
(
1/ε2). We need to store the hash

function O(log N) and k hashed values (k log N), all this multiplied by a O
(

log 1
δ

)
factor for the median trick.

O
(

log N
ε2 · log(1/δ)

)
= O

(
log n

ε2 · log
1
δ

)
.

Advanced

Problem 6. Given a stream σ of length m where each element ai is a vector in
{−1, 1}d, our goal is to estimate how large the mean vector

ā :=
1
m

m

∑
i=1

ai ∈ [−1, 1]d

is: that is, to obtain a multiplicative estimate of ∥ā∥2 within a factor 2, with proba-
bility at least 99%. Assuming that the algorithm does not “pay” the cost of storing
the random bits it uses, describe an approach to do this with very small space
complexity. What is the number of “free random bits“ your algorithm uses?

Solution 6. Ignoring the costs of keeping the JL random matrix A in memory. We
have by the JL lemma the guarantee that for any one fixed x ∈ Rd

Pr[|∥Ax∥2
2 − ∥x∥2

2| > ε∥x∥2
2] < δ,

7

compx270 Solution 8: Streaming and Sketching I s2 2024

where A ∈ Rk×d and k = O
(

ε−2 log 1
δ

)
. Take ε = 1

2 and δ = O(1). So we can
simply draw one random A (which costs O(d) random bits if done naively2) and
use it to compute a running average, which just needs saving one real number and
a counter for m.

2One can however do better as shown in https://cseweb.ucsd.edu/~dakane/deranomizedJL.

pdf, but this result is well beyond the scope of this class.

8

https://cseweb.ucsd.edu/~dakane/deranomizedJL.pdf
https://cseweb.ucsd.edu/~dakane/deranomizedJL.pdf

	Warm-up
	Problem solving
	Advanced

