
compx270 Solution 7: Nearest Neighbours and dimensionality reduction s2 2024

Warm-up

Problem 1. Give a data structure for the Nearest Neighbour problem over a d-
dimensional universe using space O(nd), for which Query runs in time O(nd)).
(Also, show that it can maintain S dynamically, and implement Insert and Remove

methods running in time O(nd).)

Solution 1. This is obtained by maintaining a simple linked list containing all
elements of S, which takes space O(nd) when storing n elements of size O(d) each.
Assuming (as stated in the lecture) that computing the distance or checking equality
between two elements x, y takes time O(d), then a lookup takes time O(n) ·O(d) =
O(nd), and so insertions and deletions as well. A nearest neighbour query on an
element x also takes time O(nd), by linear search: going through all y ∈ S one by
one, computing dist(x, y) for each, while keeping track of the y with the minimum
distance so far – and returning that element at the end.

Problem 2. Give a data structure for the Nearest Neighbour problem over {0, 1}d

using space O(2d), for which Query runs in time O(2d) (independent of n). (Also,
can maintain S dynamically, and implement Insert and Remove methods running
in time O(1).)

Solution 2. Use a 2d-sized bit array A, one for each d-bit string: {0, 1}d. So every
x ∈ {0, 1}d can be mapped one-to-one in each location of the array A. Initially every
position in A is filled with 0. To insert x, simply mark A[x] = 1. To remove x, mark
A[x] = 0. This array A takes O(2d) space.

To search for the nearest neighbour, one could iterate through the array, which
takes 2d · O(d) = O(d2d) time when done naively (since computing distances takes
time O(d) for each). A better option is to run an improved BFS: think of {0, 1}d as a
graph (hypercube), and each node has d neighbours at 1 hop, (d

2) at 2 hops1, (d
3) at 3

hops etc and so, at most 2d times to search over all of them; doing so means it is not
necessary to compute the distances as we go, since the level of the BFS corresponds
to the current distance we are checking..

Problem 3. Check your understanding: since we want very efficient lookups and
are willing to accept a small probability of failure for Query, can we use Bloom
filters for the “baby version” of LSH instead of hash tables? What fails?

Solution 3. We need to actually return some element that is C · r-near in one case
and Bloom filters do not store any element in the data structure.

Problem solving

1There are two unique paths with length 2, from 00 to 11 for {0, 1}2.

1

compx270 Solution 7: Nearest Neighbours and dimensionality reduction s2 2024

Problem 4. Prove a simplified version of Theorem 38 from the lecture notes, show-
ing how to solve the “general” ANN from the “baby version,” at the cost of only a
logarithmic factor in the ratio

∆ =
maxx,x′∈S dist(x, x′)
minx,x′∈S dist(x, x′)

Note that, for the Hamming space {0, 1}d, ∆ = O(d), where d is the dimension.

Solution 4. Disclaimer: this problem has been updated after the first tutorial on Thursday.
What we show here is the more general version than the initial one, which did not involve
the ratio ∆.

Denote the pairwise closest distance over S:

dmin = min
x,x′∈S

(dist(x, x′))

and pairwise furthest distance:

dmax = max
x,x′∈S

(dist(x, x′)),

so that ∆ = dmax
dmin

.

Algorithm:

1: Build for a list of thresholds in the form:

R :=
{

r ⩽ dmax | r = 2k · dmin

2 · C
, k ∈ {0, 1, . . . , O (log ∆)}

}
.

Denote r1, . . . , r|R| the list of thresholds from smallest to largest.

2: For each threshold r ∈ R, build your “baby” data structure ▷ O
(

log dmax
dmin

)
of them in total

Binary/doubling search over R
3: Check the “baby” data structure with the middle threshold.
4: if it returns something then
5: continue on the smaller parts.
6: else
7: continue on the big parts.
8: return the best candidate the algorithm found.

Question: why stop at dmin
2C ?

Proposition. Given query point x, there is at most one point y ∈ S such that

dist(x, y) <
dmin

2
,

and y will the optimal point for x.

2

compx270 Solution 7: Nearest Neighbours and dimensionality reduction s2 2024

Proof. We prove by contradiction: suppose there are two distinct points in y, y′ ∈ S
such that

dist(x, y) <
dmin

2
and dist(x, y′) <

dmin

2
.

By the triangle inequality (from dist being a metric) and definition of dmin:

dmin ⩽ dist(y′, y) ⩽ dist(x, y) + dist(x, y′) <
dmin

2
+

dmin

2
,

a contradiction. Therefore, there is at most one y ∈ S such that dist(x, y) < dmin
2 ,

which then must be the optimal point.

Notice the threshold dmin
2C and the baby version’s guarantee: if the optimal x∗’s

distance dist(x∗, x) ⩽ dmin
2C , then the baby version will return some point (with good

probability) that is at distance at most C · dmin
2C = dmin

2 from x (which is guaranteed
to be the optimal by the proposition).

Question: why stop at dmax?

Proposition. If OPT = dist(x∗, x) ⩾ dmax, then returning any point y ∈ S we have

dist(x, y) ⩽ 2 · OPT .

Proof. Suppose x∗ is a closest one and that dist(x∗, x) ⩾ dmax. Let y be any point in
S. Since x∗, y ∈ S, by definition, dist(x∗, y) ⩽ dmax. But then,

dist(x, y) ⩽ dist(x, x∗) + dist(x∗, y)
⩽ dist(x, x∗) + dmax

⩽ 2 dist(x, x∗)
= 2 · OPT .

This holds for any y ∈ S.

If OPT = dist(x, x∗) lies in between dmin
2C and dmax, by the way we build our table,

there exists i ∈ {1, 2, . . . , |R|} such that

ri ⩽ OPT ⩽ ri+1 and ri+1 = 2 · ri.

When run with ri+1, by the “baby version”’s guarantee, we will return some y ∈ S
that

dist(x, y) ⩽ C · ri+1 = 2C · ri ⩽ 2C · OPT .

We can conclude now that no matter what OPT is, we will return a (2 · C)-nearest
neighbour.

Problem 5. Analyse the LSH family described in the lecture notes for the Eu-
clidean case, where a locally-sensitive hash function hg : Rd → {−1, 1} is obtained
by drawing a d-dimensional Gaussian random vector g ∼ N (0d, Id) (all coordinates
are independent N (0, 1) normal random variables) and setting

hg : x ∈ Rd → sign
(d

∑
i=1

gixi

)
3

compx270 Solution 7: Nearest Neighbours and dimensionality reduction s2 2024

We will make the (restrictive) assumption that all data points and query points have
unit norm: ∥x∥2 = 1. Show that, for every r > 0, C > 1, this defines an (r, C, p, q)-
LSH family with p, q such that ρ ≤ 1/C. [Note: this is called the SimHash scheme.]

Solution 5. Fix any r > 0 (wlog, 0 < r ≤ 2, since two unit vectors are at distance at
most 2), and C > 0. Suppose that x, y ∈ Rd are two unit-norm vectors at distance
r: ∥x∥2 = ∥y∥2 = 1, ∥x − y∥2 = r. Then Prg[hg(x) ̸= hg(y)] is exactly the proba-

x

y

1
rα

g

bility, over the choice of g, that ⟨g, x⟩ and ⟨g, y⟩ have different signs, which is the
probability that x and y fall on different sides of the hyperplane defined by g (that
is, whose normal vector is g). Looking at the plane defined by x, y, and letting α
be the angle between x and y (see Figure), this is the probability the (projection of
that) hyperplane falls between x and y, which is α

π . So

Pr
g
[hg(x) ̸= hg(y)] =

α

π
.

Using some trigonometry (and the fact that ∥x∥2 = ∥y∥2 = 1) we get r2 = sin2 α +
(1 − cos α)2, that is, r2 = 2 − 2 cos α, which gives us α = arccos(1 − r2/2), and so

Pr
g
[hg(x) ̸= hg(y)] =

1
π

arccos
(

1 − r2

2

)
=

2
π

arcsin
r
2

.

(The last value is simpler, to state, and follows from the trigonometric identity
arcsin x = 1

2 arccos(1 − 2x2), for x ∈ [0, 1]. You don’t need to prove it.) This implies
that H is an (r, C, p, q)-LSH family for

p = 1 − 1
π

arccos
(

1 − r2

2

)
, q = 1 − 1

π
arccos

(
1 − C2r2

2

)
,

and has sensitivity

ρ =
log

(
1 − 1

π arccos
(

1 − r2

2

))
log

(
1 − 1

π arccos
(

1 − C2r2

2

)) = O
(

1
C

)
,

where this last inequality can be “guessed” by writing (for r → 0)

log
(

1 − 1
π

arccos
(

1 − r2

2

))
= log

(
1 − Θ(r)

))
= Θ(r)

4

https://en.wikipedia.org/wiki/Inverse_trigonometric_functions#Relationships_among_the_inverse_trigonometric_functions

compx270 Solution 7: Nearest Neighbours and dimensionality reduction s2 2024

(and same for the denominator); and can be proven formally as follows (extra/not
necessary!):

log
(
1 − 2

π arcsin r
2

)
log

(
1 − 2

π arcsin Cr
2

) ≤
2
π arcsin r

2

− log
(

1 − 2
π arcsin Cr

2

)
≤

r
2

− log
(

1 − 2
π arcsin Cr

2

)
=

1
C
· 1

f
(Cr

2

)
where f (x) :=

− log(1− 2
π arcsin x)
x . “All” that remains is to show that f (x) ≥ 1 for

all x ∈ (0, 1/2) (e.g., by showing that f is increasing, with limx→0 f (x) = 1). This
shows that ρ ≤ 1/C (not even a need for the O(·)).

Problem 6. For the set [d] = {1, 2, . . . , d}, let the universe X be the set of all 2d

subsets of [d], along with the Jaccard distance:

dist(A, B) = 1 − |A ∩ B|
|A ∪ B| , A, B ∈ X

Consider the following hash family H: for every permutation π : [d] → [d], define
hπ : X → [d] by setting

hπ(A) = min
a∈A

π(a)

and H = {hπ}π.

(⋆) Verify that the Jaccard distance is a metric on X . What is its range?a)

What is the size of H?b)

Show that, for every r ∈ (0, 1] and C > 1, H is an (r, C, p, q)-LSH family for
p = 1 − r and q = 1 − Cr. What is its sensitivity parameter ρ?

c)

Solution 6. Preliminary technical results about sets. For one of the three properties of
a metric, we will need the following intermediate (technical and annoying to show)
results, which hold for any 3 sets A, B, C:

|A|+ |B| = |A ∪ B|+ |A ∩ B| (†)

(follows from “proof by drawing”, or writing A ∪ B = (A \ B) ∪ B. In detail: A \ B
and B are disjoint, so |A ∪ B = |A \ B| + |B|. Now A \ B = A \ (A ∩ B) and
A ∩ B ⊆ A, so |A \ B| = |A| − |A ∩ B|.)

|A ∩ C| · |B ∪ C|+ |A ∪ C| · |B ∩ C| ≤ |C|(|A|+ |B|) (∗)

To prove this one: by (†),

|B ∪ C| = |B|+ |C| − |B ∩ C|

5

compx270 Solution 7: Nearest Neighbours and dimensionality reduction s2 2024

and since |A ∩ C| ≤ |C|,

|A ∩ C| · |B ∪ C| = |A ∩ C| · |C|+ |A ∩ C| · (|B| − |B ∩ C|)
≤ |A ∩ C| · |C|+ |C| · (|B| − |B ∩ C|)
= |C|(|B|+ |A ∩ C| − |B ∩ C|)

Similarly for the other term, and so

|A∩C| · |B∪C|+ |B∩C| · |A∪C| ≤ |C|(|A|+ |B|+�����|A ∩ C|−����XXXX|B ∩ C|+����XXXX|B ∩ C|−�����|A ∩ C|)

proving (∗). Finally, we will need

|C| · |A ∪ B| ≤ |A ∪ C| · |B ∪ C| (‡)

which follows from the sequence of inequalities, setting S := A ∪ C, T := B ∪ C and

|C| · |A ∪ B| ≤ |(A ∪ C) ∩ (B ∪ C)| · |A ∪ B ∪ C|
= |S ∩ T| · |S ∪ T|
≤ |S| · |T| (from (∗), “A = B = S” and “C = T”)
= |A ∪ C| · |B ∪ C|

which shows (‡).

6

compx270 Solution 7: Nearest Neighbours and dimensionality reduction s2 2024

It is straightforward to check that dist(A, B) ∈ [0, 1] for every A, B ⊆ [d],
since |A ∩ B| ≤ |A ∪ B|. (Small technicality: we assume/choose here that if
A = B = ∅, then we set dist(∅, ∅) = 0 to avoid a ratio 0/0.)
We can check the 3 axioms of a metric:

Reflexivity: if A = B, then A ∩ B = A = A ∪ B, and dist(A, B) = 1 − |A|
|A| =

1− 1 = 0. Conversely, if dist(A, B) = 0, then |A ∩ B| = |A ∪ B|, and since
A ∩ B ⊆ A ∪ B this implies A ∩ B = A ∪ B, and so A = B.

Symmetry: dist(A, B) = dist(B, A), since ∩ and ∪ are both symmetric.

Triangle inequality: Fix any A, B, C ⊆ [d]. Then what we want to show

dist(A, B) ≤ dist(A, C) + dist(C, B)

is equivalent to |A∩B|
|A∪B| ≥

|A∩C|
|A∪C| +

|B∩C|
|B∪C| − 1 that is,

|A ∩ B|+ |A ∪ B|
|A ∪ B| ≥ |A ∩ C|

|A ∪ C| +
|B ∩ C|
|B ∪ C|

which is the inequality that we will establish. Note that if any of A, B, C
is empty, we are done. If not (all are non-empty), then

|A ∩ C|
|A ∪ C| +

|B ∩ C|
|B ∪ C| =

|A ∩ C| · |B ∪ C|+ |A ∪ C| · |B ∩ C|
|A ∪ C| · |B ∪ C|

≤ |C| · (|A|+ |B|)
|A ∪ C| · |B ∪ C| (∗)

=
|C| · |A ∪ B|

|A ∪ C| · |B ∪ C| ·
|A|+ |B|
|A ∪ B|

=
|C| · |A ∪ B|

|A ∪ C| · |B ∪ C| ·
|A ∪ B|+ |A ∩ B|

|A ∪ B| (†)

≤ |A ∪ B|+ |A ∩ B|
|A ∪ B| (‡)

and we’re (at last) done.

a)

The LSH family contains as many functions as there are permutations of [d],
which is d!. So |H| = d!, or, put differently, log2 |H| = O(d log d).

b)

7

compx270 Solution 7: Nearest Neighbours and dimensionality reduction s2 2024

For any two A, B ∈ X , the probability (over the uniformly random choice of
h ∈ H that h(A) = h(B) is the probability that

min
a∈A

π(a) = min
a∈B

π(a)

over the uniformly random choice of π. To reformulate this: if the minimum
value that π takes on A ∪ B is in A ∩ B, then mina∈A π(a) = mina∈A∪B π(a) =
mina∈B π(a), and hπ(A) = hπ(B). But if the minimum value that π takes on
A ∪ B is in (A \ B) ∪ (B \ A), then either mina∈A π(a) < mina∈B π(a) (if it’s
in A \ B) or mina∈A π(a) > mina∈B π(a) (if it’s in B \ A), and in both cases
hπ(A) ̸= hπ(B). So

Pr
π
[hπ(A) = hπ(B)] = Pr

π
[arg min

a∈A∪B
π(a) ∈ A ∩ B] =

|A ∩ B|
|A ∪ B| = 1 − dist(A, B)

which directly implies, for every r and C, that H is an (r, C, p, q)-LSH family
for p = 1 − r and q = 1 − Cr (for C < 1/r). The sensitivity parameter is then

ρ =
log 1

1−r

log 1
1−Cr

=
log(1 − r)

log(1 − Cr)
= Θ

(
1
C

)
.

Extra: To give a rigorous proof of this last part, we can do as follows:

ρ =
log(1 − r)

log(1 − Cr)
≤ r

− log(1 − Cr)
=

1
C
· Cr
− log(1 − Cr)

.

Now, study the function f (x) =
− log(1−x)

x over (0, 1), and show that it is
positive and increasing, with limx→0 f (x) = 1. This implies ρ = 1

C · 1
f (Cr) ≤

1
C .

c)

Advanced

Problem 7. Give a data structure for the Nearest Neighbour problem over the
Euclidean space (Rd, ℓ2) based on kd-trees. Analyse the space complexity of the
data structure and its query time.

8

	Warm-up
	Problem solving
	Advanced

