
compx270 Tutorial 6: Hashing and Friends s2 2024

Warm-up

Problem 1. Check your understanding: summarise the key differences between a
hash table and a Bloom filter, in terms of time and space complexity and guarantees
provided.

Problem 2. Prove the claim made in class: the expected time complexities of Insert,
Lookup, and Remove with separate chaining are all O(1 + α), where α = n/m′ is
the load of the hash table. What is their worst-case time complexity?

Problem solving

Problem 3. Give an example of a universal hash family H from a universe X to a
set Y for which the inequality is not always an equality:

Pr
h∼H

[
h(x) = h(x′)

]
≤ 1

|Y| for all distinct x, x′ ∈ X

Problem 4. Given three arrays A, B, and C each containing n positive integers, the
task is to decide if there exist 1 ≤ i, j, k ≤ n such that A[i] + B[j] = C[k]. We aim for
an algorithm running in (expected) time O(n2). (We assume that, given a suitable hash
function, we can evaluate it on any given input in constant time.)

As a warm-up, describe an O(n3)-time deterministic algorithm.a)

Describe an efficient O(n2) (expected) time algorithm.b)

Prove its correctness, and expected time complexity.c)

Analyze its worst-case time complexity. Can you get O(n2) here as well?d)

Problem 5. Consider the following two-level hashing strategy: as in separate chain-
ing, we will use a hash table A of size m′ = O(n) to contain our n items, and deal
with collisions by having each of the m′ buckets handle its hashed elements on its
own. But instead of having a linked list for each bucket, we will instead use a sec-
ondary hash table for each bucket. Here we focus on the case where all n elements
are inserted at once at the beginning, and we want to focus on the lookups.

Suppose that bucket k has nk of the n elements hashed to it. What should be
the size of the hash table Ak (the hash table in in bucket k) to guarantee it only
has a collision with probability 1/2?

a)

Briefly describe how to do the batch insertion of all n elements (initialisation
of the data structure).

b)

Analyse the expected time complexity of a lookup to your hash table.c)

1

compx270 Tutorial 6: Hashing and Friends s2 2024

Analyse the expected space complexity of the overall data structure, and show
it is O(n).

d)

Problem 6. We will analyse the error probability of the Bloom filter seen in class.
We will focus on the error rate, that is, how frequently we would expect Lookup

to make a mistake, “on average.” In what follows, assume we inserted a dataset
S of n elements into the Bloom filter. We will make the following (false, but con-
venient) assumption that we have truly random hash functions: the (hi(x))i,x are
fully independent across elements x ∈ X and hash functions 1 ≤ i ≤ k, and hi(x) is
uniformly distributed in {1, 2, . . . , m′} for every i and every x:

∀i, x, y, Pr[hi(x) = y] =
1

m′

Fix any 1 ≤ i ≤ m′. After inserting n elements into our Bloom filter, what is
the probability pi that the i-th bit of our array A is set to 1?
Let B := m′

n be the average number of extra bits used per element. Using the
approximation 1+ x ≈ ex (very accurate for small x), show that pi ≈ 1− e−k/B.

a)

Error rate: What is the probability that, when calling Lookup(x) on a key
which was not inserted (not part of the n keys from S), the value returned is
yes?

b)

Say you have a target per-element storage value B in mind: B = 8 bits. What
is the number of hash functions k you should use to minimise the probability
of error?

c)

For the setting B = 8, and the choice of k above, what is the error rate you
should expect?

d)

Let’s use k = 6 hash functions and explore the trade-off between space (pa-
rameter B) and error rate – we could decide to use more space than 8 bits per
element. What is the expected error rate if you increase B to 12 bits? 16? 32?

e)

Advanced

Problem 7. Augment the Bloom filter data structure seen in class to add a Remove

operation. Analyse the resulting guarantees (performance, error probability, space
and time complexities).

2

	Warm-up
	Problem solving
	Advanced

