Warm-up

Problem 1. Check your understanding: summarise the key differences between a hash table and a Bloom filter, in terms of time and space complexity and guarantees provided.

Solution 1. Hash table: $O(\log m + m' \log m)$ v.s. Bloom filter: $O(k \log m + m')$ in space complexity (Typically, *k* is a constant.). When the number of buckets is large enough at order m' = O(n).

Bloom filter does not actually store the elements, just the bits representing if they are in the set – that's why it could be wrong sometimes.

Hash table: O(1) in expectation (e.g., for separate chaining) vs. Bloom filter: O(1) worst case in LOOKUP and INSERT. However bloom filter can make mistakes sometime (false positives) and the simple version seen in class cannot handle RE-MOVE.

Problem 2. Prove the claim made in class: the expected time complexities of INSERT, LOOKUP, and REMOVE with separate chaining are all $O(1 + \alpha)$, where $\alpha = n/m'$ is the load of the hash table. What is their *worst-case* time complexity?

Solution 2. All of them depends on the number items in one bucket – in an expected worst case sense.

Over the randomisation of $h \sim \mathcal{H}$, after inserting x_1, \ldots, x_{n-1} , how many operations do you need to perform to insert x_n ? Or look up one element after inserting x_1, \ldots, x_{n-1} ? Or remove x_n from x_1, \ldots, x_{n-1} ? They all depend on the size of the bucket $h(x_n)$. Denote $T(x_1, \ldots, x_n)$ as the number of operation one needs to perform for INSERT, LOOKUP or REMOVE.

$$\mathbb{E}_{h\sim\mathcal{H}}[T(x_1,\ldots,x_n)]=\mathbb{E}_{h\sim\mathcal{H}}[N_{h(x_n)}],$$

where $N_{h(x)}$ denote the size of the bucket for h(x) after x_1, \ldots, x_{n-1} is inserted over the randomisation of h.

By linearity of expectation. Given a universal hash family \mathcal{H} , we know for any $x \neq x'$, the following holds:

$$\Pr_{h \sim \mathcal{H}}[h(x) = h(x')] \leqslant \frac{1}{|\mathcal{Y}|}.$$

Without loss of generality, we will assume that $x_1, ..., x_{n-1}$ are distinct (as this is the hardest case). We can compute the expectation as follows:

$$\mathbb{E}[N_{h(x_n)}] = \mathbb{E}\left[\sum_{i=1}^{n-1} \mathbb{1}_{\{h(x_i)=h(x_n)\}}\right] = \sum_{i=1}^{n-1} \mathbb{E}[\mathbb{1}_{\{h(x_i)=h(x_n)\}}] = \sum_{i=1}^{n-1} \Pr_{h \sim \mathcal{H}}[h(x) = h(x')] \leqslant \frac{n-1}{|\mathcal{Y}|}$$

And $|\mathcal{Y}| = m'$.

In the absolute worst case, there are at most O(n) elements in any bucket.

Problem solving

Problem 3. Give an example of a universal hash family \mathcal{H} from a universe \mathcal{X} to a set \mathcal{Y} for which the inequality is not always an equality:

 $\Pr_{h \sim \mathcal{H}} \left[h(x) = h(x') \right] \le \frac{1}{|\mathcal{Y}|} \quad \text{for all distinct } x, x' \in \mathcal{X}$

Solution 3. Credits to someone in the tutorial session: consider the hash family $\mathcal{H} = \{h_1, h_2\}$ where $h_1(0) = 0$, $h_1(1) = 1$, and $h_2(0) = 1$, $h_2(1) = 0$.

For more, see, e.g., observations in https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202017/lectures/14.pdf.

Problem 4. Given three arrays *A*, *B*, and *C* each containing *n* positive integers, the task is to decide if there exist $1 \le i, j, k \le n$ such that A[i] + B[j] = C[k]. We aim for an algorithm running in (expected) time $O(n^2)$. (We assume that, given a suitable hash function, we can evaluate it on any given input in constant time.)

- a) As a warm-up, describe an $O(n^3)$ -time deterministic algorithm.
- b) Describe an efficient $O(n^2)$ (expected) time algorithm.
- c) Prove its correctness, and expected time complexity.
- d) Analyze its worst-case time complexity. Can you get $O(n^2)$ here as well?

Solution 4.

- a) The baseline algorithm is to iterate over all $1 \le i, j, k \le n$ triples (there are n^3 of them) and, for each of them, check if A[i] + B[j] = C[k].
- b) Consider the following algorithm: we create a hash table *T*, and insert all *n* elements from *C* in *T*. Once this is done, we loop over all n^2 possible pairs $1 \le i, j \le n$, and for each of them do a lookup in *T* to see if *T* contains the value A[i] + B[j]: if it does, we know there exists some *k* such that A[i] + B[j] = C[k] and return true. If no such pair *i*, *j* is found, then we can return false.
- c) Suppose there exist i^*, j^*, k^* such that $A[i^*] + B[j^*] = C[k^*]$. After inserting all element from *C* in *T*, the hash table contains the value $C[k^*]$; which means that, when looping over all pairs *i*, *j*, we will consider i^*, j^* and return true after performing a lookup for $A[i^*] + B[j^*]$ in *T*. Conversely, if the algorithm returns true at some iteration *i*, *j*, then this means *T* contains the value A[i] + B[j]; but since we inserted the prices listed in *V* (and only those values) into *T*, then there must be some index *k* such that C[k] = A[i] + B[j].

In total, the algorithm performs *n* insertions into the hash table *T* and at most n^2 lookups. All options of collision handling mentioned in class (e.g., linear probing, separate chaining, and cuckoo hashing) have expected O(1) insertions and lookups, so the total *expected* time complexity is $O(n) + O(n^2) = O(n^2)$.

- d) We perform n insertions and at most n^2 lookups in the hash table. Depending on the choice of collision handling, this means the following worst-case time complexity:
 - Using linear probing or chaining: all operations take O(n) worst-case time. This means that the worst-case time complexity is $O(n^3)$.
 - Using cuckoo hashing: insertions still takes O(n) time in the worst case. However, now lookups are only O(1) time even in the worst case, and so the total worst-case time complexity is $O(n^2)$.

Problem 5. Consider the following *two-level hashing* strategy: as in separate chaining, we will use a hash table A of size m' = O(n) to contain our n items, and deal with collisions by having each of the m' buckets handle its hashed elements on its own. But instead of having a linked list for each bucket, we will instead use a secondary *hash table* for each bucket. Here we focus on the case where all n elements are inserted at once at the beginning, and we want to focus on the lookups.

- a) Suppose that bucket *k* has n_k of the *n* elements hashed to it. What should be the size of the hash table A_k (the hash table in in bucket *k*) to guarantee it only has a collision with probability 1/2?
- b) Briefly describe how to do the batch insertion of all *n* elements (initialisation of the data structure).
- c) Analyse the expected time complexity of a lookup to your hash table.
- d) Analyse the expected space complexity of the overall data structure, and show it is O(n).

Solution 5.

a) Suppose we make size of table *m*. The number of collision in expectation is.

$$\mathbb{E}\left[\#\text{number of collisions}\right] = \sum_{0 < i < j < n_k} \mathbb{1}_{\{h(i) = h(j)\}} = \sum_{0 < i < j < n_k} \Pr_{h \sim \mathcal{H}}[h(x) = h(x')] \leqslant \frac{\binom{n_k}{2}}{m}$$

Set $m = 2\binom{n_k}{2} = O(n_k^2)$. By Markov's inequality,

Pr [#number of collisions
$$\geq 1$$
] $\leq 1\mathbb{E}$ [#number of collisions] $\leq \frac{\binom{n_k}{2}}{m} \leq \frac{1}{2}$.

b) Pick your first hash function *h*.

- 1. Hash all *n* elements and find out each n_k , for k = 1, ..., m'. Assuming O(1) operation cost for hashing: O(m') = O(n).
- 2. For the *k*-th position, initialise your secondary hash table with size $O(n_k^2)$. (If there is a collision, rehash until there isn't any. A constant number of rehashings is enough in expectation, and with high probability, for each fixed *k*.)

- c) O(1). Because no collision in the previous step.
- d) Space complexity: how many buckets are in there? First we look at one particular position *k*,

$$n_k = \sum_x \mathbb{1}_{\{h(x)=k\}}$$

Remember that the first hash function $h : m \to m'$. Linearity of expectation:

$$\mathbb{E}\left[\sum_{k=1}^{m'} n_k^2\right] = \sum_{k=1}^{m'} \mathbb{E}[n_k^2]$$

$$= \sum_{k=1}^{m'} \mathbb{E}\left[\left(\sum_x \mathbb{1}_{\{h(x)=k\}}\right)^2\right]$$

$$= \sum_{k=1}^{m'} \mathbb{E}\left[\left(\sum_x \mathbb{1}_{\{h(x)=k\}}\right) \left(\sum_y \mathbb{1}_{\{h(y)=k\}}\right)\right]$$

$$= \sum_{k=1}^{m'} \mathbb{E}\left[\left(\sum_x \sum_y \mathbb{1}_{\{h(x)=k\}} \cdot \mathbb{1}_{\{h(y)=k\}}\right)\right]$$

$$= \sum_{k=1}^{m'} \mathbb{E}\left[\left(\sum_x \mathbb{1}_{\{h(x)=k\}} \cdot \mathbb{1}_{\{h(x)=k\}}\right) + \sum_{x\neq y} \mathbb{1}_{\{h(x)=k\}} \cdot \mathbb{1}_{\{h(y)=k\}}\right]$$

$$= \sum_{k=1}^{m'} \sum_x \mathbb{E}[\mathbb{1}_{\{h(x)=k\}} \cdot \mathbb{1}_{\{h(x)=k\}}] + \sum_{k=1}^{m'} \sum_{x\neq y} \mathbb{E}[\mathbb{1}_{\{h(x)=k\}} \cdot \mathbb{1}_{\{h(y)=k\}}]$$

It's one if and only if h(x) = k.

$$\mathbb{E}[\mathbb{1}_{\{h(x)=k\}} \cdot \mathbb{1}_{\{h(x)=k\}}] = \mathbb{E}[\mathbb{1}_{\{h(x)=k\}}] = \Pr[h(x)=k]$$

It's one if and only if h(x) = k and h(y) = k.

$$\mathbb{E}[\mathbb{1}_{\{h(x)=k\}} \cdot \mathbb{1}_{\{h(y)=k\}}] = \Pr[h(x) = k, h(y) = k].$$

Swapping the sum over, we get

LHS =
$$\sum_{x} \sum_{k=1}^{m'} \mathbb{E}[\mathbb{1}_{\{h(x)=k\}} \cdot \mathbb{1}_{\{h(x)=k\}}] + \sum_{x \neq y} \sum_{k=1}^{m'} \mathbb{E}[\mathbb{1}_{\{h(x)=k\}} \cdot \mathbb{1}_{\{h(y)=k\}}]$$

= $\sum_{x} \left(\sum_{k=1}^{m'} \Pr[h(x)=k]\right) + \sum_{x \neq y} \left(\sum_{k=1}^{m'} \Pr[h(x)=k,h(y)=k]\right)$
= $\sum_{x} 1 + \sum_{x \neq y} \Pr[h(x)=h(y)] \leqslant n + \frac{n(n-1)}{2} \frac{1}{m'} = O(n).$

See for instance Section 5.7: https://jeffe.cs.illinois.edu/teaching/algorithms/ notes/05-hashing.pdf **Problem 6.** We will analyse the error probability of the Bloom filter seen in class. We will focus on the error rate, that is, how frequently we would expect LOOKUP to make a mistake, "on average." In what follows, assume we inserted a dataset *S* of *n* elements into the Bloom filter. We will make the following (false, but convenient) assumption that we have truly random hash functions: the $(h_i(x))_{i,x}$ are fully independent across elements $x \in \mathcal{X}$ and hash functions $1 \le i \le k$, and $h_i(x)$ is uniformly distributed in $\{1, 2, \ldots, m'\}$ for every *i* and every *x*:

$$\forall i, x, y, \quad \Pr[h_i(x) = y] = \frac{1}{m'}$$

- a) Fix any 1 ≤ i ≤ m'. After inserting *n* elements into our Bloom filter, what is the probability p_i that the *i*-th bit of our array A is set to 1?
 Let B := m'/n be the average number of extra bits used per element. Using the approximation 1 + x ≈ e^x (very accurate for small x), show that p_i ≈ 1 e^{-k/B}.
- b) *Error rate:* What is the probability that, when calling LOOKUP(*x*) on a key which was *not* inserted (not part of the *n* keys from *S*), the value returned is yes?
- c) Say you have a target per-element storage value *B* in mind: B = 8 bits. What is the number of hash functions *k* you should use to minimise the probability of error?
- d) For the setting B = 8, and the choice of k above, what is the error rate you should expect?
- e) Let's use k = 6 hash functions and explore the trade-off between space (parameter *B*) and error rate we could decide to use more space than 8 bits per element. What is the expected error rate if you increase *B* to 12 bits? 16? 32?

Solution 6.

a) Since we made the assumption of truly uniform hashing, the probability that, for any fixed element *x* inserted, the *i*-th bit is *not* set to 1 by the *j*-th hash function is equal to 1 - 1/m'. By independence, since we have *k* hash functions and *n* elements, the probability that the *i*-th bit is *not* set to 1 is equal to $(1 - 1/m')^{kn}$, and so

$$p_i = 1 - \left(1 - \frac{1}{m'}\right)^{kn} \approx 1 - e^{-\frac{nk}{m'}} = 1 - e^{-\frac{k}{B}}$$

b) For this to happen, we need all k bits $h_1(x), \ldots, h_k(x)$ to be set to 1. By the previous question and our independence assumption, this happens with probability

$$p_1 \times \cdots \times p_k = \left(1 - e^{-\frac{k}{B}}\right)^k$$

c) Either eyeball it on a plot, or use calculus (differentiate $(1 - e^{-\frac{k}{8}})^k$ with respect to k). You might want to use https://www.wolframalpha.com/... In detail: letting $f(x) = (1 - e^{-x/8})^x$, we want to minimise f. Differentiating, you can check that

$$f'(x) = f(x)\left(\frac{x}{8} \cdot \frac{1}{e^{x/8} - 1} + \ln\left(1 - e^{-x/8}\right)\right)$$

and, since f(x) > 0 for all x > 0, f'(x) = 0 if, and only if,

$$\frac{x}{8} \cdot \frac{1}{e^{x/8} - 1} + \ln\left(1 - e^{-x/8}\right) = 0.$$

Going further to argue that there is exactly one solution requires more calculus and is not very interesting, but you can check that plugging $x = 8 \ln 2$ in the left-hand side does evaluate to 0: *f* is minimised for $x = 8 \ln 2 \approx 5.6$.

The right answer is therefore k = 6 (the function is minimised for $k \approx 5.6$, and we need an integer). In general, one can derive the answer (again, based on the above approximations and assumptions, which are actually quite well supported in practice) to be $k = \lceil (\ln 2)B \rceil$. See, e.g., the above computation replacing 8 by *B*, or this computation on WolframAlpha.

- d) We have $(1 e^{-6/8})^6 \approx 0.0216$, so the expected false positive rate when calling LOOKUP is roughly 2.16%.
- e) The corresponding values are 0.37%, 0.09%, and ... 0.0025%. The rate decreases quite fast as a function of *B* (for fixed *k*, *n*): see this plot:

Namely, the error rate decreases polynomially, roughly as

 $\Theta(1/B^6)$.

Extra: why is the error rate r(B) decreasing as $\Theta(1/B^6)$? One way to see it is to plot log r(B) as a function of log B (a "log log plot"), since if $r(B) = 1/B^c$ for some

constant *c*, then $\log r(B) = \log(1/B^c) = -c \log B$ and the log log plot will look like a line with slope -c. Which is roughly what we observe here, for c = 6: Another

way is to see how the expression $r(B) = \left(1 - e^{-\frac{6}{B}}\right)^6$ from (d) behaves as *B* increases $(B \to \infty)$: then $6/B \to 0$, and Taylor approximations $(e^u \approx 1 + u \text{ for small } u)$ give us

$$\left(1 - e^{-\frac{6}{B}}\right)^6 \approx \left(1 - \left(1 - \frac{6}{B}\right)\right)^6 = \frac{6^6}{B^6} = \frac{46656}{B^6} = \Theta\left(\frac{1}{B^6}\right)$$

as claimed.

Advanced

Problem 7. Augment the Bloom filter data structure seen in class to add a REMOVE operation. Analyse the resulting guarantees (performance, error probability, space and time complexities).

Solution 7. (*Sketch*) One option is to use a secondary Bloom filter which keeps track of the deletions. (Note that this introduces a second type of errors now, false negatives, since the second Bloom filter has a small error probability of claiming an element was deleted.)

For a discussion, and other options, see, e.g., https://cs.stackexchange.com/ questions/19292/deleting-in-bloom-filters (and references).