
compx270 Solution 6: Hashing and Friends s2 2024

Warm-up

Problem 1. Check your understanding: summarise the key differences between a
hash table and a Bloom filter, in terms of time and space complexity and guarantees
provided.

Solution 1. Hash table: O(log m + m′ log m) v.s. Bloom filter: O(k log m + m′) in
space complexity (Typically, k is a constant.). When the number of buckets is large
enough at order m′ = O(n).

Bloom filter does not actually store the elements, just the bits representing if
they are in the set – that’s why it could be wrong sometimes.

Hash table: O(1) in expectation (e.g., for separate chaining) vs. Bloom filter:
O(1) worst case in Lookup and Insert. However bloom filter can make mistakes
sometime (false positives) and the simple version seen in class cannot handle Re-
move.

Problem 2. Prove the claim made in class: the expected time complexities of Insert,
Lookup, and Remove with separate chaining are all O(1 + α), where α = n/m′ is
the load of the hash table. What is their worst-case time complexity?

Solution 2. All of them depends on the number items in one bucket – in an expected
worst case sense.

Over the randomisation of h ∼ H, after inserting x1, . . . , xn−1, how many opera-
tions do you need to perform to insert xn? Or look up one element after inserting
x1, . . . , xn−1? Or remove xn from x1, . . . , xn−1? They all depend on the size of the
bucket h(xn). Denote T(x1, . . . , xn) as the number of operation one needs to perform
for Insert, Lookup or Remove.

Eh∼H[T(x1, . . . , xn)] = Eh∼H[Nh(xn)],

where Nh(x) denote the size of the bucket for h(x) after x1, . . . , xn−1 is inserted over
the randomisation of h.

By linearity of expectation. Given a universal hash family H, we know for any
x ̸= x′, the following holds:

Pr
h∼H

[h(x) = h(x′)] ⩽
1
|Y| .

Without loss of generality, we will assume that x1, . . . , xn−1 are distinct (as this is
the hardest case). We can compute the expectation as follows:

E[Nh(xn)] = E

[
n−1

∑
i=1

1{h(xi)=h(xn)}

]
=

n−1

∑
i=1

E[1{h(xi)=h(xn)}] =
n−1

∑
i=1

Pr
h∼H

[h(x) = h(x′)] ⩽
n − 1
|Y| .

And |Y| = m′.
In the absolute worst case, there are at most O(n) elements in any bucket.

1

compx270 Solution 6: Hashing and Friends s2 2024

Problem solving

Problem 3. Give an example of a universal hash family H from a universe X to a
set Y for which the inequality is not always an equality:

Pr
h∼H

[
h(x) = h(x′)

]
≤ 1

|Y| for all distinct x, x′ ∈ X

Solution 3. Credits to someone in the tutorial session: consider the hash family
H = {h1, h2} where h1(0) = 0, h1(1) = 1, and h2(0) = 1, h2(1) = 0.

For more, see, e.g., observations in https://www.cs.purdue.edu/homes/hmaji/

teaching/Fall%202017/lectures/14.pdf.

Problem 4. Given three arrays A, B, and C each containing n positive integers, the
task is to decide if there exist 1 ≤ i, j, k ≤ n such that A[i] + B[j] = C[k]. We aim for
an algorithm running in (expected) time O(n2). (We assume that, given a suitable hash
function, we can evaluate it on any given input in constant time.)

As a warm-up, describe an O(n3)-time deterministic algorithm.a)

Describe an efficient O(n2) (expected) time algorithm.b)

Prove its correctness, and expected time complexity.c)

Analyze its worst-case time complexity. Can you get O(n2) here as well?d)

Solution 4.

The baseline algorithm is to iterate over all 1 ≤ i, j, k ≤ n triples (there are n3

of them) and, for each of them, check if A[i] + B[j] = C[k].
a)

Consider the following algorithm: we create a hash table T, and insert all n
elements from C in T. Once this is done, we loop over all n2 possible pairs
1 ≤ i, j ≤ n, and for each of them do a lookup in T to see if T contains the value
A[i] + B[j]: if it does, we know there exists some k such that A[i] + B[j] = C[k]
and return true. If no such pair i, j is found, then we can return false.

b)

Suppose there exist i∗, j∗, k∗ such that A[i∗] + B[j∗] = C[k∗]. After inserting
all element from C in T, the hash table contains the value C[k∗]; which means
that, when looping over all pairs i, j, we will consider i∗, j∗ and return true after
performing a lookup for A[i∗] + B[j∗] in T. Conversely, if the algorithm returns
true at some iteration i, j, then this means T contains the value A[i] + B[j]; but
since we inserted the prices listed in V (and only those values) into T, then
there must be some index k such that C[k] = A[i] + B[j].
In total, the algorithm performs n insertions into the hash table T and at most
n2 lookups. All options of collision handling mentioned in class (e.g., linear
probing, separate chaining, and cuckoo hashing) have expected O(1) inser-
tions and lookups, so the total expected time complexity is O(n) + O(n2) =
O(n2).

c)

2

https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202017/lectures/14.pdf
https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202017/lectures/14.pdf

compx270 Solution 6: Hashing and Friends s2 2024

We perform n insertions and at most n2 lookups in the hash table. Depending
on the choice of collision handling, this means the following worst-case time
complexity:

• Using linear probing or chaining: all operations take O(n) worst-case
time. This means that the worst-case time complexity is O(n3).

• Using cuckoo hashing: insertions still takes O(n) time in the worst case.
However, now lookups are only O(1) time even in the worst case, and so
the total worst-case time complexity is O(n2).

d)

Problem 5. Consider the following two-level hashing strategy: as in separate chain-
ing, we will use a hash table A of size m′ = O(n) to contain our n items, and deal
with collisions by having each of the m′ buckets handle its hashed elements on its
own. But instead of having a linked list for each bucket, we will instead use a sec-
ondary hash table for each bucket. Here we focus on the case where all n elements
are inserted at once at the beginning, and we want to focus on the lookups.

Suppose that bucket k has nk of the n elements hashed to it. What should be
the size of the hash table Ak (the hash table in in bucket k) to guarantee it only
has a collision with probability 1/2?

a)

Briefly describe how to do the batch insertion of all n elements (initialisation
of the data structure).

b)

Analyse the expected time complexity of a lookup to your hash table.c)

Analyse the expected space complexity of the overall data structure, and show
it is O(n).

d)

Solution 5.

Suppose we make size of table m. The number of collision in expectation is.

E [#number of collisions] = ∑
0<i<j<nk

1{h(i)=h(j)} = ∑
0<i<j<nk

Pr
h∼H

[h(x) = h(x′)] ⩽
(nk

2)

m
.

Set m = 2(nk
2) = O(n2

k). By Markov’s inequality,

Pr [#number of collisions ⩾ 1] ⩽ 1E [#number of collisions] ⩽
(nk

2)

m
⩽

1
2

.

a)

Pick your first hash function h.

1. Hash all n elements and find out each nk, for k = 1, . . . , m′. Assuming
O(1) operation cost for hashing: O(m′) = O(n).

2. For the k-th position, initialise your secondary hash table with size O(n2
k).

(If there is a collision, rehash until there isn’t any. A constant number of
rehashings is enough in expectation, and with high probability, for each
fixed k.)

b)

3

compx270 Solution 6: Hashing and Friends s2 2024

O(1). Because no collision in the previous step.c)

Space complexity: how many buckets are in there? First we look at one par-
ticular position k,

nk = ∑
x
1{h(x)=k}

Remember that the first hash function h : m → m′.
Linearity of expectation:

E

[
m′

∑
k=1

n2
k

]
=

m′

∑
k=1

E[n2
k]

=
m′

∑
k=1

E

(∑
x
1{h(x)=k}

)2

=
m′

∑
k=1

E

[(
∑
x
1{h(x)=k}

)(
∑
y
1{h(y)=k}

)]

=
m′

∑
k=1

E

[(
∑
x

∑
y
1{h(x)=k} · 1{h(y)=k}

)]

=
m′

∑
k=1

E

[(
∑
x
1{h(x)=k} · 1{h(x)=k}

)
+ ∑

x ̸=y
1{h(x)=k} · 1{h(y)=k}

]

=
m′

∑
k=1

∑
x

E[1{h(x)=k} · 1{h(x)=k}] +
m′

∑
k=1

∑
x ̸=y

E[1{h(x)=k} · 1{h(y)=k}]

It’s one if and only if h(x) = k.

E[1{h(x)=k} · 1{h(x)=k}] = E[1{h(x)=k}] = Pr[h(x) = k].

It’s one if and only if h(x) = k and h(y) = k.

E[1{h(x)=k} · 1{h(y)=k}] = Pr[h(x) = k, h(y) = k].

Swapping the sum over, we get

LHS = ∑
x

m′

∑
k=1

E[1{h(x)=k} · 1{h(x)=k}] + ∑
x ̸=y

m′

∑
k=1

E[1{h(x)=k} · 1{h(y)=k}]

= ∑
x

(
m′

∑
k=1

Pr[h(x) = k]

)
+ ∑

x ̸=y

(
m′

∑
k=1

Pr[h(x) = k, h(y) = k]

)

= ∑
x

1 + ∑
x ̸=y

Pr[h(x) = h(y)] ⩽ n +
n(n − 1)

2
1

m′ = O(n).

See for instance Section 5.7: https://jeffe.cs.illinois.edu/teaching/algorithms/
notes/05-hashing.pdf

d)

4

https://jeffe.cs.illinois.edu/teaching/algorithms/notes/05-hashing.pdf
https://jeffe.cs.illinois.edu/teaching/algorithms/notes/05-hashing.pdf

compx270 Solution 6: Hashing and Friends s2 2024

Problem 6. We will analyse the error probability of the Bloom filter seen in class.
We will focus on the error rate, that is, how frequently we would expect Lookup

to make a mistake, “on average.” In what follows, assume we inserted a dataset
S of n elements into the Bloom filter. We will make the following (false, but con-
venient) assumption that we have truly random hash functions: the (hi(x))i,x are
fully independent across elements x ∈ X and hash functions 1 ≤ i ≤ k, and hi(x) is
uniformly distributed in {1, 2, . . . , m′} for every i and every x:

∀i, x, y, Pr[hi(x) = y] =
1

m′

Fix any 1 ≤ i ≤ m′. After inserting n elements into our Bloom filter, what is
the probability pi that the i-th bit of our array A is set to 1?
Let B := m′

n be the average number of extra bits used per element. Using the
approximation 1+ x ≈ ex (very accurate for small x), show that pi ≈ 1− e−k/B.

a)

Error rate: What is the probability that, when calling Lookup(x) on a key
which was not inserted (not part of the n keys from S), the value returned is
yes?

b)

Say you have a target per-element storage value B in mind: B = 8 bits. What
is the number of hash functions k you should use to minimise the probability
of error?

c)

For the setting B = 8, and the choice of k above, what is the error rate you
should expect?

d)

Let’s use k = 6 hash functions and explore the trade-off between space (pa-
rameter B) and error rate – we could decide to use more space than 8 bits per
element. What is the expected error rate if you increase B to 12 bits? 16? 32?

e)

Solution 6.

Since we made the assumption of truly uniform hashing, the probability that,
for any fixed element x inserted, the i-th bit is not set to 1 by the j-th hash
function is equal to 1− 1/m′. By independence, since we have k hash functions
and n elements, the probability that the i-th bit is not set to 1 is equal to
(1 − 1/m′)kn, and so

pi = 1 −
(

1 − 1
m′

)kn
≈ 1 − e−

nk
m′ = 1 − e−

k
B

a)

For this to happen, we need all k bits h1(x), . . . , hk(x) to be set to 1. By the
previous question and our independence assumption, this happens with prob-
ability

p1 × · · · × pk =
(

1 − e−
k
B

)k

b)

5

compx270 Solution 6: Hashing and Friends s2 2024

Either eyeball it on a plot, or use calculus (differentiate
(

1 − e−
k
8

)k
with re-

spect to k). You might want to use https://www.wolframalpha.com/. . . In
detail: letting f (x) = (1 − e−x/8)x, we want to minimise f . Differentiating,
you can check that

f ′(x) = f (x)
(

x
8
· 1

ex/8 − 1
+ ln

(
1 − e−x/8

))
and, since f (x) > 0 for all x > 0, f ′(x) = 0 if, and only if,

x
8
· 1

ex/8 − 1
+ ln

(
1 − e−x/8

)
= 0.

Going further to argue that there is exactly one solution requires more calculus
and is not very interesting, but you can check that plugging x = 8 ln 2 in the
left-hand side does evaluate to 0: f is minimised for x = 8 ln 2 ≈ 5.6.
The right answer is therefore k = 6 (the function is minimised for k ≈ 5.6,
and we need an integer). In general, one can derive the answer (again, based
on the above approximations and assumptions, which are actually quite well
supported in practice) to be k = ⌈(ln 2)B⌉. See, e.g., the above computation
replacing 8 by B, or this computation on WolframAlpha.

c)

We have (1− e−6/8)6 ≈ 0.0216, so the expected false positive rate when calling
Lookup is roughly 2.16%.

d)

The corresponding values are 0.37%, 0.09%, and. . . 0.0025%.
The rate decreases quite fast as a function of B (for fixed k, n): see this plot:

e)

Namely, the error rate decreases polynomially, roughly as

Θ(1/B6) .

Extra: why is the error rate r(B) decreasing as Θ(1/B6)? One way to see it is to
plot log r(B) as a function of log B (a “log log plot”), since if r(B) = 1/Bc for some

6

https://www.wolframalpha.com/
https://tinyurl.com/235c7jyd
https://tinyurl.com/2p9by7eb

compx270 Solution 6: Hashing and Friends s2 2024

constant c, then log r(B) = log(1/Bc) = −c log B and the log log plot will look like
a line with slope −c. Which is roughly what we observe here, for c = 6: Another

way is to see how the expression r(B) =
(

1 − e−
6
B

)6
from (d) behaves as B increases

(B → ∞): then 6/B → 0, and Taylor approximations (eu ≈ 1+ u for small u) give us

(
1 − e−

6
B

)6
≈
(

1 −
(

1 − 6
B

))6

=
66

B6 =
46656

B6 = Θ
(

1
B6

)
as claimed.

Advanced

Problem 7. Augment the Bloom filter data structure seen in class to add a Remove

operation. Analyse the resulting guarantees (performance, error probability, space
and time complexities).

Solution 7. (Sketch) One option is to use a secondary Bloom filter which keeps
track of the deletions. (Note that this introduces a second type of errors now, false
negatives, since the second Bloom filter has a small error probability of claiming an
element was deleted.)

For a discussion, and other options, see, e.g., https://cs.stackexchange.com/
questions/19292/deleting-in-bloom-filters (and references).

7

https://cs.stackexchange.com/questions/19292/deleting-in-bloom-filters
https://cs.stackexchange.com/questions/19292/deleting-in-bloom-filters

	Warm-up
	Problem solving
	Advanced

