
compx270 Solution 5: Graph algorithms s2 2024

Warm-up

Problem 1. Explain why every undirected graph on n vertices has exactly 2n−1 − 1
distinct cuts (not all minimum cuts).

Solution 1. Each cut is identified by a partition of V. To count the number of
possible partitions, consider choosing the number of subsets of {1, . . . , n}, which is
2n. So, we can choose a subset A ⊂ V then let the rest be B = V \ A as one partition.
Due to the symmetry of partition, (A1, B1) = (A2, B2) if A1 = B2 and we need to
ensure that it is nonempty: A1 = ∅ or A1 = {1, . . . , n} (B1 will be empty). We have

2n − 2
2

= 2n−1 − 1.

Problem 2. Solve the two recurrence relations for the Karger–Stein algorithm (time
and probability).

Solution 2. For the runtime,

T(n) = 2T
(

n/
√

2
)
+ O(n2).

We can see the pattern:

T(n) = 4T
(n

2

)
+ 2c ·

(
n√
2

)2

+ cn2

= 4T
(n

2

)
+ cn2 + cn2

= 8T
(

n
2
√

2

)
+ 4c

(n
2

)2
+ cn2 + cn2

= 8T
(

n
2
√

2

)
+ 3cn2

=

O(log√2 n)

∑
j=0

2jc ·

 n(√
2
)j

2

= O(n2 log n).

For the probability recurrence, see the proof from the lecture notes.

Problem 3. Analyse/describe what would happen to the time complexity and suc-
cess probability if we only did 1 run (instead of 2) for the Karger–Stein algorithm.
What if we did 3 runs instead of 2?

Solution 3. If we only do 1 run, it is the same as first one except you are checking
every other step.

1

compx270 Solution 5: Graph algorithms s2 2024

If we do 3 runs, we get difference recurrence equations, denote T′ the time
complexity of the 3-runs version c′ denote the time to run 3 Modified Karger:

T′(n) = 3T′
(

n/
√

2
)
+ c′n2.

T(n) = 9T
(n

2

)
+ 3c′ ·

(
n√
2

)2

+ c′n2

= 9T
(n

2

)
+

3
2

c′n2 + c′n2

= 27T
(

n
2
√

2

)
+ 9c′

(n
2

)2
+

3
2

c′n2 + c′n2.

=
t=O(log2 n)

∑
k=1

(
3
2

)k−1

· c′n2

= c′n2
t=O(log2 n)

∑
k=1

(
3
2

)k−1

= c′n2
1
(

1 −
(3

2

)t
)

1 − 3
2

= 2c′n2

((
3
2

)log2(O(n2))

− 1

)

= 2c′n2

((
3
2

)log3/2(O(n2))·log2(3/2)

− 1

)
= 2c′n2((O(n2))log2(3/2) − 1)

= O(n2 log2 3).

A slightly larger runtime if we use the same threshold.

Problem solving

Problem 4. Show how to, given as input a (multi)graph G = (V, E) in either the
adjacency matrix or adjacency list representation, to sample an edge uniformly at
random in time O(n), where n = |V|.

Solution 4. Suppose the data structure encodes the degree of any vertex, i.e., query
to degree of any vertex Vi takes O(1) operation. Query every vertex’s degree and
put into an array. We can then do the following:

1. Sample with probability Pr[Vi] =
Di

∑n
i=1 Di

, where Di denote the degree of Vi.

2. Given sampled Vi, sample one of its neighbouring edges with probability 1
Di

.

2

compx270 Solution 5: Graph algorithms s2 2024

Combined, each edge could be selected if the algorithm selects one of its end
points, and then choosing it. Without loss of generality, let e = (i, j):

Pr[T = e] =
Di

∑n
i=1 Di

· 1
Di

+
Dj

∑n
i=1 Di

· 1
Dj

=
2

∑n
i=1 Di

=
2
|E| .

Also there is a sampling algorithm on adjacency matrix with expected runtime
of O(n), when m ⩾ n − 1 via rejection sampling: sample coordinates u.a.r. and
if it hits one of the edges in the graph, return that edge; otherwise, repeat. The
probability to hit one edge each time is m

n2 and so in expectation, the runtime is
n2

m = O(n) as m ≥ n − 1 (the graph is connected).
Adjacency list representation: Keep list of each vertex’s degree, and total number

of edges m. Pick i in [m] u.a.r. Given the degrees, we can find in O(n) time where
the i-th edge start from. We then, given that vertex, can find the right (i’-th) neighbor
in O(n) time.

Problem 5. Consider the following generalisation of Min-Cut:

k-Min-Cut: Given an (undirected) connected graph G = (V, E) on n vertices
and m edges ad an integer k ≥ 2, output a k-cut (A1, . . . , Ak) (partition of V)
minimising the number ck(A1, . . . , Ak) of edges between the different connected
components A1, . . . , Ak.

Adapt (the basic version of) Karger’s algorithm to solve this problem.a)

Analyse the success probability and running time.b)

Provide a bound on the maximum number of k-Min-Cuts a graph can have.c)

Solution 5. Consider k a constant.
a) Contract until 4k vertices are left. Brute force (takes O(k4k) time – constant

time :))
b) Denote C = (A1, A2, . . . , Ak) the minimum cut. Similarly, we look at the

iterative process and denote the contracted graph at each step i, (Vi, Ei), for i =

0, . . . , n − k. For each Vi, we can partition Vi into L =
⌈
|Vi|

k

⌉
sets of at most size k,

denote them S1, . . . , SL (and S1, . . . , SL−1 have size k; SL could be less than that). For
j ⩽ L − 1, suppose sum of Sj’s degree is less than |C|, then we can cut out every
vertex in Si and get a better cut than C, which is a contradiction.

|Ei| =
1
2 ∑

v∈Vi

degree(v) =
1
2

L

∑
j=1

∑
v∈Sj

degree(v) ⩾
1
2

⌊
|Vi|

k

⌋
|C| ⩾ 1

2

(
|Vi|

k
− 1
)
|C|.

Therefore,
|C|
|Ei|

⩽
|C|

1
2

(
|Vi|

k − 1
)
|C|

=
2k

|Vi| − k
.

3

compx270 Solution 5: Graph algorithms s2 2024

Therefore, the probability of getting the cut C (the algorithm will choose edges until
n − k − 1),

Pr [C is preserved] =
n−4k−1

∏
i=0

(
1 − |C|

|Ei|

)
⩾

n−4k−1

∏
i=0

(
1 − 2k

|Vi| − k

)
=

n−4k−1

∏
i=0

(
1 − 2k

(n − i)− k

)
=

n−4k−1

∏
i=0

(
n − i − 3k
n − i − k

)
=

n − 3k
n − k

· n − 1 − 3k
n − 1 − k

· · · n − 5k
n − 3k

· · · 4k + 1 − 2k
4k + 1

· · · 4k + 1 − 3k
4k + 1 − k

=
3k + 2
n − k

· · · k + 1
n − 3k + 1

⩾ Ω
(

1
n2k

)
.

For large enough n ≫ k. Repeating this O(n2k log(1/δ)) times and pick the best
one suffices.

c) There are at most O(n2k) unique values to return in step 2. Suppose every
k-cut in 4k vertices are minimum, so we get at most O(k4kn2k) = O(n2k) :)

We can probably do better for problem c). Consider the same setting, at step i,
we have Vi. We know that for any subset S ⊆ Vi of size k, we have that

∑
v∈S

degree(v) ⩾ |C|.

We can do something silly: make k copies of Vi, i.e., let Yj = Vi and Y1, . . . , Yk.
We have in total, k · |Vi| number of vertices’ degree to sum over now; and we can
rearrange such that all of them form distinct subset with size k.

|Ei| =
1
2 ∑

v∈Vi

degree(v) =
1
2k ∑

v∈Y1∪···∪Yk

degree(v) ⩾
1
2k

|Vi||C|.

1 2 3 · · · k · · · n
1 2 3 · · · k · · · n
1 2 3 · · · k · · · n
...

...
...

...
...

1 2 3 · · · k · · · n

Table 1: We can find one such arragement through the diagonals.

4

compx270 Solution 5: Graph algorithms s2 2024

Redo the probability calculation, we get

Pr [C is preserved] =
n−2k−1

∏
i=0

(
1 − 2k

|Vi|

)
⩾

n−2k−1

∏
i=0

(
n − i − 2k

n − i

)
=

n − 2k
n

n − 1 − 2k
n − 1

· · · n − 4k
n − 2k

· · · 2k + 1
4k + 1

· · · 1
2k + 1

=
2k · (2k − 1) · · · 1

n · (n − 1) · · · (n − 2k + 1)

= 1/
(

n
2k

)
⩾ Ω

(
1

n2k

)
.

c) There are at most O(n2k) possible unique k-min-cut.

Problem 6. Consider the following algorithm:

1. Draw, independently for every edge e ∈ E, a weight we in [0, 1] uniformly at
random.

2. Build the MST of G = (V, E, w) (according to these weights)

3. Remove the heaviest edge of the MST, and let A, B be the resulting 2 compo-
nents.

4. Return (A, B) as cut.

Show that this is equivalent to Karger’s algorithm (the “basic” version). Deduce
how to implement this algorithm in time O(m log m).

Solution 6. The idea is to run Kruskal’s algorithm and it is equivalent to the contrac-
tion algorithm: you pick a random ordering of the edges, so when you go through
the edges one by one in Kruskal this is like sampling an edge u.a.r.

At each step i, you have all the edges with weights uniformly and independently
sampled from [0, 1] (conditioned on the edges picked before, but that doesn’t matter
because of independence) and so this gives you a uniformly random ordering each
time.

The step of Kruskal is basically a contraction:

• if that creates a cycle, this means your edge was already in a “supervertex” so
you cannot contract it

• otherwise, you contract it When you exclude edges (those edges are picked
by MST algo), the rest is not affected (can still be seen as random ordering
among themselves).

5

compx270 Solution 5: Graph algorithms s2 2024

It is like contraction each time MST picks one edge in. Except it contract all of
them and at the end, you cut one to reverse that. Well, it has to be connected at
first to run MST. So |V| − 1 ≤ m. 1. Go through edges, generate random numbers
O(m). 2. Run MST O(m log |V|) = O(m log m).

See also Exercise 2 of https://www.fundamentalalgorithms.com/f20/notes/min-
cut.pdf

Advanced

Problem 7. Prove that (a suitable modification of) Karger’s algorithm still works
for weighted graphs (with non-negative weights). Do the same for the Karger–Stein
algorithm.

Solution 7. Pick e with Pr
[

we
∑e∈E we

]
instead. At each time i = 0, . . . , n − 1, Vi, Ei.

Denote W = ∑u∈A,v∈B w(u, v), the weight of the min-cut. Let C := {(u, v)|u ∈
A, v ∈ B}.

The probability that it gets cut at step i, is

Pr [algo picks e ∈ C] = Pr

[
∑e′∈C we′

∑e∈Ei
we

]
.

The min weights around any one vertex is at least W, otherwise, contradiction.
Then

∑
e∈Ei

we ⩾
1
2
|Vi| · W ⇒ ∑e′∈C we′

∑e∈Ei
we

⩽
2W

|Vi| · W
=

2
|Vi|

.

The rest follows the proof from the lecture notes (i.e., is similar to the unweighted
case)

Pr [C is returned] =
n−2

∏
i=0

(
1 − Pr

[
∑e′∈C we′

∑e∈Ei
we

])

6

https://www.fundamentalalgorithms.com/f20/notes/min-cut.pdf
https://www.fundamentalalgorithms.com/f20/notes/min-cut.pdf

	Warm-up
	Problem solving
	Advanced

