
compx270 Solution 4: Derandomisation s2 2024

Warm-up

Problem 1. Check your understanding: how many independent random bits are
necessary (and sufficient) to generate a uniformly random integer in {1, . . . , n}? To
generate a uniformly random subset S ⊆ {1, . . . , n}?

Solution 1. Generally speaking, ⌈log2 k⌉ bits of randomness are necessary (and
sufficient) to generate a uniformly random element from a domain of size k. This
implies the answer to the first question is ⌈log2 n⌉, and the answer to the second is
⌈log2(2

n)⌉ = n.

Problem 2. Let X, Y be independent Bernoulli random variables with parameter
1/2 (that is, independent, uniformly random bits), and set Z = X ⊕ Y. Show that
Z is a uniformly random bit, and that X, Y, Z are pairwise independent but not
independent.

Solution 2. To see that Z is uniformly distributed, observe that Z = 0 if, and only
if, X = Y, which means

Pr[ Z = 0 ] = Pr[ X = 0, Y = 0 ] + Pr[ X = 1, Y = 1 ]
= Pr[ X = 0 ] · Pr[Y = 0 ] + Pr[ X = 1 ] · Pr[Y = 1 ]

=
1
2
· 1

2
+

1
2
· 1

2
=

1
2

where we used that X, Y are independent and uniformly distributed. For pairwise
independence: we already know that X, Y are pairwise independent (that’s our
assumption), so it only remains to show that X, Z are pairwise independent (by
symmetry, Y, Z will be pairwise independent by the same argument). We can do it
as follows: for every b, b′ ∈ {0, 1},

Pr
[

X = b, Z = b′
]
= Pr

[
X = b, X⊕Y = b′

]
= Pr

[
X = b, b⊕Y = b′

]
= Pr

[
X = b, Y = b⊕ b′

]
= Pr[ X = b ] · Pr

[
Y = b⊕ b′

]
=

1
2
· 1

2
= Pr[ X = b ] · Pr

[
Z = b′

]
where we relied again on the independence of X and Y (and, for the last step, on
X, Z both being uniformly distributed).

This proved pairwise independence of X, Y, Z. To wee why they are not inde-
pendent, note for instance that

Pr[ X = 0, Y = 0, Z = 1 ] = Pr[ X = 0, Y = 0, X⊕Y = 1 ] = Pr[ X = 0, Y = 0, 0 = 1 ]
= 0

̸= 1
8
= Pr[ X = 0 ] · Pr[Y = 0 ] · Pr[ Z = 1 ]

1



compx270 Solution 4: Derandomisation s2 2024

Problem 3. We have seen in class the definition of a family of pairwise independent
hash functions, also called a strongly universal hash family from X to Y : H is such a
family if, for every distinct x, x′ ∈ X and every y, y′ ∈ Y , we have

Pr
h∼H

[
h(x) = y, h(x′) = y′

]
=

1
|Y|2

where the probability is over the uniformly random choice of h ∈ H. We now
introduce a related (but weaker) concept: H is a universal hash family from X to Y
if, for every distinct x, x′ ∈ X ,

Pr
h∼H

[
h(x) = h(x′)

]
≤ 1
|Y|

Show that every strongly universal hash family is a universal hash family. (Note: the
converse is not true, see for instance Problem 8.)

Solution 3. Suppose H is a strongly universal hash family from X to Y . Then, for
any two distinct x, x′ ∈ X ,

Pr
h∼H

[
h(x) = h(x′)

]
= ∑

y∈Y
Pr

h∼H

[
h(x) = y, h(x′) = y

]
= ∑

y∈Y

1
|Y|2 =

1
|Y|

where we used the guarantee provided by strongly universal hashing for the second
equality. Note that in the end, we get an equality (= 1

|Y| ), instead of the slightly

relaxed requirement of a universal hash family: ≤ 1
|Y| would have been enough.

Problem solving

Problem 4. Give a randomised algorithm which, on input a graph G = (V, E) with
|V| = n and |E| = m, runs in time O(m(n + m)) and outputs a cut (A, B) such that
c(A, B) ≥ m

2 with probability at least 0.99.

Solution 4. We would like to use what we saw in class, namely, that since E[c(A, B)] ≥
m
2 for our “basic” randomised algorithm, we have

Pr
[

c(A, B) ≥ m
2

]
> 0

and then repeat the algorithm many times (and check the output each time) to
amplify the probability of success. Unfortunately, “strictly positive probability” is
not enough: maybe this probability could be arbitrarily close to zero, and how many
times would we need to run the basic algorithm to amplify this?! Now, imagine that
we have proved instead, for some not-too-small p > 0 (we’ll show p = Ω(1/m)).

Pr
[

c(A, B) ≥ m
2

]
≥ p (1)

2



compx270 Solution 4: Derandomisation s2 2024

where the probability is over the choice of a random cut as before: that is, ≥ p
instead of > 0. That’d be enough! Then, just repeating the process (with indepen-
dent, fresh randomness) a total of O(1/p) times, we’d have that with probability
at least 99% one of the these random cuts has value at least m/2. Indeed (think
of the geometric distribution!) the probability that something which happens with
probability p does not happen in T = 5/p independent attempts is at most

(1− p)T ≤ e−pT = e−5 < 1/100

(where we used 1− x ≤ e−x). And if one of the cuts obtained has at least m/2
edges, we can easily detect it: counting the number of edges of a given cut takes
O(m) time. So overall, choosing a uniformly random cut takes time O(n) (n random
bits to set, one per vertex), checking whether the result has value at least m/2 takes
time O(m)), and for O(1/p) repetitions we end up with a total running time of
O( 1

p (m + n)).

So it “suffices” to prove this stronger statement (1) for p = Ω(1/m). To do so,
let’s start by what we proved earlier, E[c(A, B)] = m

2 , and try to squeeze more of it.
For convenience, define δ := Pr

[
c(A, B) ≥ m

2

]
(and observe that a cut cannot have

more than m edges, so Pr[ c(A, B) ≥ ℓ ] = 0 for ℓ > m)

m
2
= E[c(A, B)] =

∞

∑
ℓ=1

Pr[ c(A, B) ≥ ℓ ] =
m

∑
ℓ=1

Pr[ c(A, B) ≥ ℓ ]

=
⌈m/2⌉−1

∑
ℓ=1

Pr[ c(A, B) ≥ ℓ ]︸ ︷︷ ︸
≤1

+
m

∑
ℓ=⌈m/2⌉

Pr[ c(A, B) ≥ ℓ ]︸ ︷︷ ︸
≤Pr[ c(A,B)≥m

2 ]=δ

≤ (⌈m/2⌉ − 1) · 1 + (m− ⌈m/2⌉+ 1) · δ = (⌈m/2⌉ − 1) + (⌊m/2⌋+ 1) · δ

and so

Pr
[

c(A, B) ≥ m
2

]
= δ ≥

m
2 − (

⌈m
2

⌉
− 1)⌊m

2

⌋
+ 1

≥
1
2⌊m

2

⌋
+ 1
≥

1
2

m
2 + 1

=
1

m + 2
= Ω

(
1
m

)
as we wanted (where we used for the second inequality the fact that k/2− ⌈k/2⌉ is
either 0 (for k even) or −1/2 (for k odd), so always at least −1/2).

Problem 5. We will prove Fact 22.2 from the lecture notes:

There exists an explicit family of pairwise independent hash functions
H ⊆ {h : [n]→ {0, 1}} with |H| = 2⌈log(n+1)⌉.

To do so, suppose for simplicity that n + 1 is a power of 2, i.e., n = 2k − 1 for some
integer k. We will identify an integer 1 ≤ x ≤ n with its binary representation
x ∈ {0, 1}k (note that this representation is not the all-zero vector, as x ̸= 0). Define
H = {hS}S⊆{0,1}k , where, for a given set S ⊆ {0, 1}k,

hS(x) =
⊕
i∈S

xi, x ∈ {0, 1}k

that is, hS(x) is the sum, modulo 2, of the bits of x that are indexed by S.

3



compx270 Solution 4: Derandomisation s2 2024

What is the size |H| of H?a)

How many random bits does it take to draw a hash function h fromH? Argue
such a has function can be drawn, stored, and evaluated (on any input x)
efficiently.

b)

Show that H is a family of pairwise independent hash functions.c)

Solution 5.

This is 2k: the number of distinct subsets of [k] = {1, 2, . . . , k}a)

This takes log2(2
k) = k independent uniform random bits. Generate a random

k-bit string s and store it: this corresponds to a subset S ⊆ [k] in the natural
way (i ∈ S if, and only if, si = 1). To evaluate hS given this s ∈ {0, 1}k, it
suffices to observe that we can then rewrite

hS(x) =
⊕
i∈S

xi =
k⊕

i=1

sixi

so hS can be evaluated on x in O(k) time by computing x∧ s (the bitwise AND
of x and s), and then looking at the parity (XOR) of the resulting k-bit string.

b)

Fix two distinct x, x′ ∈ {0, 1}k, and any two y, y′ ∈ {0, 1}. We will look at the
subsets of {0, 1}k corresponding to x and x′: that is, define

A :=
{

i ∈ [k] : xi = 1, x′i = 0
}
= x \ x′

B :=
{

i ∈ [k] : xi = 0, x′i = 1
}
= x′ \ x

C :=
{

i ∈ [k] : xi = 1, x′i = 1
}
= x ∩ x′

Since x ̸= x′, at least one of A, B must be non-empty. Without loss of gener-
ality, assume A ̸= ∅: whether B is empty or not, we don’t know. Similarly, C
could be empty as well, but if B is empty then C must be non-empty: other-
wise x′ would be the all-zero string, but we know x′ ̸= 0.
Given a subset S ⊆ [k] corresponding to a string s ∈ {0, 1}k, we can rewrite
(check it!) hS(x) =

⊕
i∈A si ⊕

⊕
i∈C si, and hS(x′) =

⊕
i∈B si ⊕

⊕
i∈C si. Im-

portantly, since A, B, C are disjoint subsets of [k] and s is chosen uniformly at
random in {0, 1}k, the 3 random variables⊕

i∈A

si,
⊕
i∈B

si,
⊕
i∈B

si

are independent! (But, if B = ∅ for instance, then
⊕

i∈B si = 1 regardless of s.
So we will have to do an annoying distinction of cases.)

c)

4



compx270 Solution 4: Derandomisation s2 2024

Let’s start: first case, if A, B are both non-empty

Pr
S

[
hS(x) = y, hS(x′) = y′

]
= Pr

s

[⊕
i∈A

si ⊕
⊕
i∈C

si = y,
⊕
i∈B

si ⊕
⊕
i∈C

si = y′
]

= ∑
y′′∈{0,1}

Pr
s

[⊕
i∈A

si ⊕
⊕
i∈C

si = y,
⊕
i∈B

si ⊕
⊕
i∈C

si = y′,
⊕
i∈C

si = y′′
]

= ∑
y′′∈{0,1}

Pr
s

[⊕
i∈A

si = y⊕ y′′,
⊕
i∈B

si = y′ ⊕ y′′,
⊕
i∈C

si = y′′
]

= ∑
y′′∈{0,1}

Pr
s

[⊕
i∈A

si = y⊕ y′′
]

Pr
s

[⊕
i∈B

si = y′ ⊕ y′′
]

Pr
s

[⊕
i∈C

si = y′′
]

= ∑
y′′∈{0,1}

1
2
· 1

2
· Pr

s

[⊕
i∈C

si = y′′
]

=
1
4

where for the 4th equality we used independence of the 3 random variables,
and for the last we used the fact that A, B ̸= ∅ (so

⊕
i∈A si,

⊕
i∈B si are uni-

formly distributed) and that probabilities sum to one.
Now, second case, if A ̸= ∅ but B is empty (then C cannot be empty), then⊕

i∈B si =
⊕

i∈∅ si = 1, and

Pr
S

[
hS(x) = y, hS(x′) = y′

]
= Pr

s

[⊕
i∈A

si ⊕
⊕
i∈C

si = y,
⊕
i∈B

si ⊕
⊕
i∈C

si = y′
]

= Pr
s

[⊕
i∈A

si ⊕
⊕
i∈C

si = y,
⊕
i∈C

si = y′
]

= Pr
s

[⊕
i∈A

si = y⊕ y′,
⊕
i∈C

si = y′
]

= Pr
s

[⊕
i∈A

si = y⊕ y′
]
· Pr

[⊕
i∈C

si = y′
]

=
1
2
· 1

2
=

1
4

here using again the fact that
⊕

i∈A si,
⊕

i∈C si are independent, but also that
they are both uniformly distributed since A, C are noth nonempty.

Remark: if we were only asked to prove the weaker statement that H = {hS}S is a
universal hash family (not strongly universal), this would be much easier! Try it.

5



compx270 Solution 4: Derandomisation s2 2024

Problem 6. In an (undirected) graph G = (V, E), a triangle is a triple of vertices
u, v, w such that the 3 edges (u, v), (v, w), (u, w) exist in E. In a directed graph G =

(V, E⃗), an oriented triangle is a cycle of length 3: namely, a triple of vertices u, v, w
such that the 3 directed edges (u→ v), (v→ w), (w→ u) exist in E⃗.

Given as input an undirected graph G, we want to give an orientation to each
edge e ∈ E (that is, convert G into a directed graph) while maximising the number
of oriented triangles in the resulting directed graph.

Give a randomised algorithm whose output has an expected number of ori-
ented triangles at least 1/4 the maximum possible number OPT(G).

a)

Convert your algorithm into a deterministic (efficient) algorithm achieving the
same approximation guarantee.

b)

Solution 6.

Consider the “obvious” randomised algorithm which, for edge edge e =
(u, v) ∈ E, picks one of the two orientations (u → v) or (v → u) uniformly
at random, independently of other edges. Let T be set of undirected trian-
gles in the input graph G: for every t = (u, v, w) ∈ T, denote by Xt the
indicator random variable of whether the triangle t becomes a valid oriented
triangle. This happens if all 3 orientations are consistent: u → v → w → u or
u ← v ← w ← u (two options). Since each edge’s orientation is chosen inde-
pendently and the triangle has 3 edges, each of the two options has probability
(1/2)3, and so we get, for every t ∈ T,

E[Xt] = Pr[ t becomes an oriented triangle ] = 2 ·
(

1
2

)3

=
1
4

The total number of oriented triangles we get is ∑t∈T Xt (the number of undi-
rected triangles successfully becoming oriented triangles), and so by linearity
of expectation the expected number of oriented triangles we get is

E

[
∑
t∈T

Xt

]
= ∑

t∈T
E[Xt] = ∑

t∈T

1
4
=
|T|
4
≥ OPT(G)

4

the last inequality since the optimal number of oriented triangles cannot be
larger than the number of undirected triangles in the original graph (we cannot
“create” triangles by orienting edges).

a)

6



compx270 Solution 4: Derandomisation s2 2024

Let’s derandomise the “basic” randomised algorithm above. To do so, we have
two options: the first is to note that we don’t need full independence of our
random choices for the orientation of the edges, but just 3-wise independence:
indeed, all we need is that, for each triangle, the choices of orientation for
the 3 edges involved are independent, and then we get the (1/2)3 probabil-
ity in our analysis. But as mentioned in class, to get m bits that are 3-wise
independent, we only need O(log m) truly random bits [more generally, for m
k-wise independent bits we only need O(k log m) uniformly random bits], so we can
use the brute-force approach seen in class to go over all random seeds and
check the result for each (in time O(n3), since there are at most (n

3) = O(n3)

triangles): this gives an algorithm running in time O(2O(log m) · n3) = poly(n)
time (recall that m ≤ n2, so log m = O(log n)).
The second option is to use the method of conditional expectations: to do so, we
will fix an (arbitrary) ordering of the edges, say e1, e2, . . . , em, and sequentially
choose their orientation. Letting NT be the random variable denoting the
number of oriented triangles and X1, . . . , Xm ∈ {↑, ↓} denoting the orientation
chosen for the corresponding edges, what we want is to be able to efficiently
compute

E[NT | X1, . . . , Xi, Xi+1 =↑], E[NT | X1, . . . , Xi, Xi+1 =↓]

so that, at step i + 1 we can choose the orientation of edge ei+1 which max-
imises the conditional expectation of NT given the choices already made. If
we can do this, then since

E[NT | X1, . . . , Xi] =
1
2

E[NT | X1, . . . , Xi, Xi+1 =↑] + 1
2

E[NT | X1, . . . , Xi, Xi+1 =↓]

≤ max(E[NT | X1, . . . , Xi, Xi+1 =↑], E[NT | X1, . . . , Xi, Xi+1 =↓])

(the first equality since our original algorithm choose Xi+1 =↑ and Xi+1 =↓
both with probability 1/2), by picking the best choice of the two we’ll have

OPT(G)

4
≤ E[NT]

≤ E[NT | X1]

≤ · · ·
≤ E[NT | X1, . . . , Xi]

≤ E[NT | X1, . . . , Xi+1]

≤ · · ·
≤ E[NT | X1, . . . , Xm]

and that last value is not random anymore, it’s just what our derandomised
algorithm will have given us after choosing the orientation of all m edges
deterministically.

b)

7



compx270 Solution 4: Derandomisation s2 2024

So how to compute E[NT | X1, . . . , Xi, Xi+1 =↑] efficiently? After having cho-
sen X1, . . . , Xi, from all the original “possible triangles” T, we only need to
consider the ones involving the current edge ei+1 (since our choice will not
affect the others). Among this set of triangles Ti+1, we have: (1) the ones in
which 0 edges have been oriented so far; (2) the ones in which 1 edge has
been oriented; (3) the ones in which 2 edges have been oriented, and they are
no longer possible because the orientation was bad, ; (3) the ones in which 2 edges
have been oriented, and they are still possible because the orientation was consis-
tent. We only care about (1), (2), and (4), since the triangles in (3) are “dead”
regardless of our choice for Xi+1.

• Each triangle t in case (1) will still be possible regardless of our choice
for Xi+1: so E[Xt | X1, . . . , Xi+1] = 1

22 = 1
4 (once we choose Xi+1, the

remaining two edges only form an oriented triangle if they both take the
orientation consistent with our choice)

• A triangle t in case (2) only remains possible if Xi+1 is consistent with
the already chosen edge in that triangle: so E[Xt | X1, . . . , Xi+1] is either
0 (our choice is not consistent with that edge, the triangle dies) or 1/2
(our choice is consistent, so the triangle will survive if the remaining last
edge is also consistent)

• A triangle t in case (4) survives for sure if Xi+1 is consistent with the 2 al-
ready chosen edges in that triangle, and dies otherwise: so E[Xt | X1, . . . , Xi+1]
is either 0 or 1.

In time O(n3), for each of the two choices of Xi+1 ∈ {↑, ↓} we can go through
all the triangles in T, see which ones are in which case, and sum the corre-
sponding value for the resulting conditional expectation E[Xt | X1, . . . , Xi+1]
for that triangle (either 0, 1/4, 1/2, or 1). This gives us E[NT | X1, . . . , Xi, Xi+1 =↑]
and E[NT | X1, . . . , Xi, Xi+1 =↓], and we pick the choice for Xi+1 leading to the
biggest value of the two.

Problem 7. Given a 2-colouring c : E → {red, blue} of a graph G = (V, E), a
monochromatic triangle is a triple of vertices (u, v, w) ∈ V3 such that the edges
(u, v), (v, w), (u, w) exist (are in E) and c(u, v) = c(v, w) = c(u, w) (they have the
same colour). Show that, for every n, there exists is a 2-colouring of the complete
graph Kn with at most n3

24 monochromatic triangles. Give an efficient (polynomial-
time) deterministic algorithm which, on input n, finds such a 2-colouring.

Solution 7. (Sketch). This is similar to the previous exercise: pick a uniformly
random 2-colouring by choosing the colour of edge independently: since this is the
complete graph, there are expactly (n

3) triangles, so after colouring at random the

expected number of monochromatic triangles will be 1
23 (

n
3) =

n(n−1)(n−2)
24 ≤ n3

24 . This
can again be derandomised with either of the two approaches (3-wise independence
and brute-force search; or method of conditional expectations).

8



compx270 Solution 4: Derandomisation s2 2024

Advanced

Problem 8. Fix a prime number p ≥ 2 and an integer n ≥ 1. For a given a =
(a1, . . . , an) ∈ Zn

p, define the function ha : Zn
p → Zp by

ha(x) =
n

∑
i=1

aixi mod p, x ∈ Zn
p

and let H = {ha}a∈Zn
p .

How many bits does it take to fully specify a function h ∈ H? And an arbitrary
function f : Zn

p → Zp?
a)

Show that H is a universal hash family (see Problem 3); that is, for every
x, x′ ∈ Zn

p,

Pr
h∼H

[
h(x) = h(x′)

]
=

1
p

b)

Is it a strongly universal hash family?c)

Solution 8.

This takes n ⌈log2 p⌉ bits for the first, pn ⌈log2 p⌉ for the second (from log2(|Zp||Z
n
p|) =

|Zn
p| log2 |Zp| = pn log2 p).

a)

First, note that, for any fixed two distinct x, y ∈ Zn
p and a ∈ Zn

p,

ha(x) = ha(y)⇔
n

∑
j=1

aj(xj − yj) = 0 mod p

It is therefore sufficient to show the statement for x ∈ Zn
p \ {0} and y = 0. Fix

such a x, and let m be the number of its non-zero components; since any i such
that xi = 0 does not contribute to the value of ha(x), and n is arbitrary, we
can, without loss of generality, suppose that all xi’s are non-zero and (up to a
permutation of the indices) work with the quantity

(
∑m

j=1 ajxj

)
mod p (where

m ≥ 1 by assumption on x being non-zero). We will prove by induction on
m ≥ 1 the following (stronger) claim (where every equality is taken mod p):

∀q ∈ Zp, Pr

[(
m

∑
j=1

ajxj

)
= q mod p

]
=

1
p

b)

9



compx270 Solution 4: Derandomisation s2 2024

Base case (m = 1) For any q ∈ Zp, Pr[ a1x1 = q ] = Pr
[

a1 = qx−1
1

]
= 1

p (as
x1 ̸= 0, and a1 is drawn uniformly at random).

Induction step Suppose m ≥ 2, and fix an arbitrary q ∈ Zp.

Pr

[(
m

∑
j=1

ajxj

)
= q

]
=

p−1

∑
r=0

Pr

[
m−1

∑
j=1

ajxj = q− r, am = r

]

=
p−1

∑
r=0

Pr

[
m−1

∑
j=1

ajxj = q− r

]
· Pr[ am = r ]

(independence)

=
p−1

∑
r=0

Pr

[
m−1

∑
j=1

ajxj = q− r

]
· 1

p
(am is uniform)

=
p−1

∑
r=0

1
p
· 1

p
(induction hypothesis)

= p · 1
p2 =

1
p

which proves the claim.

No: Consider taking x = 0, y ̸= 0: then regardless of x′, y′, we have

Pr
[

h(0) = y, h(x′) = y′
]
= 0

Interestingly, adding a0 would fix this issue and give a strongly universal hash
family: that is, having ha defined as ha(x) = a0 + ∑n

i=1 aixi, where a ∈ Zn+1
p

(try to prove it!)

c)

10


	Warm-up
	Problem solving
	Advanced

