
compx270 Solution 3: Balls in Bins s2 2024

Warm-up

Problem 1. Generalise Eq. (22) of the lecture notes to m > n bins, to compute
directly

E[empty bins after m balls]
and solve for m to get this expectation to be at most 1/2. Show you retrieve the
Θ(n log n) bound.

Solution 1. By linearity of expectation,

E [empty bins after n balls] =
n

∑
i=1

Pr[ i-th bin empty ] = n
(

1 − 1
n

)m
≤ n · e−m/n.

Solving

n · e−m/n ≤ 1
2

for m gives, taking logarithms, ln(2n) ≤ m
n , that is m = Ω(n log n).

Problem 2. Use Chebyshev’s inequality to bound the probability that m(n), the
number of balls needed to hit every bin at least once, is greater than αn ln n (for
α > 1).

Solution 2. Denote Ti as the r.v. that counts how many balls to throw to hit the i-th
bin after the (i − 1) bins are filled.

m(n) = T1 + T2 + · · ·+ Tn.

To use Chebyshev’s inequality, we need to know the expectation and variance. Ti

follows a geometric distribution, whose mean and variance are 1
pi

and 1−pi
p2

i
(resp.),

and here pi =
n−i+1

n . Following the lecture notes, we have

E[m(n)] =
n

∑
i=1

E[Ti] =
n

∑
i=1

n
n − i + 1

= nHn = n log n + O(n) ≤ 2n log n.

σ2 = Var[m(n)] ≤ π2

6
n2.

By Chebyshev’s inequality, let t = (α − 2)n log n,

Pr[m ⩾ α · n log n] ≤ Pr[|m − E[m]| ⩾ t] ≤ Var[m]

t2 ,

and thus

Pr[m ⩾ αn log n] ≤
π2

6 n2

((α − 2) · n log n)2 = O

(
1

log2 n

)

Problem solving
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Problem 3. Let c > 0 some constant to be determined later. We want to show
that, when throwing m = cn ln n balls into n bins (uniformly and independently at
random), with high probability every bin has Θ(ln n) balls. That is, with probability
at least 1 − o(1) we have both that minimum load at least c1 ln n and the maximum
load at most c2 ln n, for some constants 0 < c1 < c2.

Let Li the load of bin i, for a fixed 1 ≤ i ≤ n. Compute E[Li] and Var[Li].a)

Use Chebyshev to bound

Pr
[

Li /∈
[

1
2

c ln n,
3
2

c ln n
] ]

Is it enough to conclude?

b)

Show, using a Chernoff bound, that

Pr
[

Li /∈
[

1
2

c ln n,
3
2

c ln n
] ]

≤ 2
nc/12

(What does Hoeffding’s give?)

c)

Pick a suitable value of c > 0 to conclude that

Pr
[
∀i, Li ∈

[
1
2

c ln n,
3
2

c ln n
] ]

≥ 1 − 2
n

d)

Solution 3.

As Li ∼ Bin
(

m, 1
n

)
, we get E[Li] =

m
n = c ln n and Var[Li] =

m
n

(
1 − 1

n

)
≤

m
n = c ln n.

a)

Since

Pr
[

Li /∈
[

1
2

c ln n,
3
2

c ln n
] ]

= Pr
[
|Li − E[Li]| ⩾

1
2

c ln n
]

,

by Chebyshev, using the bound on Var[Li] above have

Pr
[

Li /∈
[

1
2

c ln n,
3
2

c ln n
] ]

≤ 4c ln n
c2 ln2 n

=
4

c ln n

This is small (for large enough n), but not small enough for our purposes: as
we want to bound that probability that any of the Li’s is large, we need to take
a union bound over all n of them. That would lead to a bound of n · 4

c ln n ,
which is vacuous (completely useless): this is greater than 1!

b)
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Apply the Chernoff bound (Li is a sum of independent Bernoulli draws)

Pr
[
|Li − c log n| ⩾ 1

2
c log n

]
≤ 2 exp

(
− c log n

12

)
and so

Pr
[

Li ̸∈
[

1
2

c log n,
3
2

c log n
]]

≤ 2
nc/12 .

c)

We note that

Pr
[
∀i, Li ∈

[
1
2

c log n,
3
2

c log n
]]

= 1 − Pr
[
∃i, Li ̸∈

[
1
2

c log n,
3
2

c log n
]]

.

By the union bound,

Pr
[
∃i, Li ̸∈

[
1
2

c log n,
3
2

c log n
]]

≤
n

∑
i=1

Pr
[

Li ̸∈
[

1
2

c log n,
3
2

c log n
]]

≤ n · 2
nc/12 =

2
n

c
12−1

.

Choosing c = 24 suffices.

d)

Problem 4. Suppose that instead of throwing m balls into n bins where each bin
has the same probability 1/n, now bin i has probability pi, where ∑n

i=1 pi = 1. We
will see this vector of probabilities as a vector p ∈ [0, 1]n.

As a function of p, what is the probability to get a collision when m = 2?a)

What is the expected number of collisions, E[c(m, n)] when throwing m ≥ 2
balls with replacement?

b)

(If you want to go further, try to compute or bound the variance as a function of
∥p∥2, ∥p∥3, m. It is not easy.)

Solution 4.

Denote Xi as the indicator r.v. for a collision at i-th bin. Using independence
between draws:

Pr[Xi = 1] = Pr [first ball hits i-th bin] · Pr [second ball hits i-th bin] = p2
i .

Pr [collision] =
n

∑
i=1

Pr[Xi = 1] =
n

∑
i=1

p2
i = ∥p∥2

2,

where ∥ · ∥2 denotes the 2-norm of a vector.

a)

3



compx270 Solution 3: Balls in Bins s2 2024

Write Yj for the indicator of a collision between draws 1 ≤ cj < dj ≤ m: there
are (m

2 ) such indicators. Using linearity of expectation,

E[c(m, n)] =
(m

2 )

∑
j=1

E[Yj] =
(m

2 )

∑
j=1

Pr[Yj] =
m(m − 1)

2
∥p∥2

2

which behaves like Θ(m2∥p∥2
2). As a sanity check, when p is the uniform

distribution (1/n, 1/n, . . . , 1/n), we have ∥p∥2
2 = ∑n

i=1
1
n = 1

n , and we retrieve
the result seen in class.

b)

Problem 5. (Guided tutorial) Consider the “best of two choices” strategy: when
throwing ball t, we select two bins independently and uniformly at random, and put
the ball in the least full of the two (breaking ties arbitrarily). We will (not) prove the
following result stated in the lecture:

(The Power of Two Choices) The expected maximum load L̂(n) when throwing in-
dependently n balls into n bins using the “best of two choices” strategy satisfies

L̂(n) ≤ log log n + O(1)

but at least give a sketch of proof that should provide some intuition. (Compare it to
the O(

log n
log log n ) bound when using only “one choice”! This is a very useful and sur-

prising result: see https://www.eecs.harvard.edu/~michaelm/postscripts/handbook2001.
pdf for a survey and applications.)

Denote by Bi, for 1 ≤ i ≤ n, the number of bins that have at least i balls after
throwing n balls according to the best-of-two-choices strategy. Explain why
B2 ≤ n

2 .

a)

Let B′
i (for i ≥ 3) be the number of balls which, at the time they were thrown

and then added to a bin, were the i-th or more in their chosen bin. Argue that
Bi ≤ B′

i .

b)

Explain why, at any step 1 ≤ t ≤ n (when we threw the t-th ball), there were
at most Bi bins with at least i balls. Deduce that the probability that ball t
chooses a bin containing already at least i ≥ 2 balls is at most (Bi/n)2.

c)

Show that E
[
B′

i+1
]
≤ B2

i
n .d)

Ignoring all dependencies for now (dependence between events, things are
equal to their expectation, etc.), explain how this hints at a recurrence relation
of the form

Bi+1 ≤
B2

i
n

(“Wishful thinking”)

Solve this recurrence relation: what upper bound for Bi (i ≥ 2) would this
give?

Bi ≤
n

22i−2

e)
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Conclude by given the maximum i (according to this “wishful thinking bound”)
for which Bi ≥ 1. Explain how that would imply the result.

f)

This would conclude the proof assuming everything behaves exactly as expected,
to get the above recurrence relation. To make this formal, we would need to ar-
gue that each Bi concentrates tightly around its expectation (and keep track of the
small deviations around them), and to do that we would need a bit more than
Chernofff/Hoeffding since B1, . . . , Bn are very much dependent. There are ways to
handle these dependencies, but they are beyond the scope here.

To conclude: why stop at two choices? Going above the same outline as above,
sketch why, we d ≥ 2 choices instead, we would get an expected max load of

logd log n + O(1) =
log log n

log d
+ O(1)

that is, not a breathtaking improvement.

a)

Solution 5.

B2 > n
2 by definition would mean that there are more than n/2 bins with more

than 2 balls. So strictly more than (n/2) · 2 = n balls are in the bins, which
exceeds n the number of balls actually thrown.

a)

For every bin that has at least i balls after all n balls are thrown, we look at
how its last ball was thrown. Its last ball will be the i-th ball into the bin,
which gets counted into B′

i . So every bin counted by Bi has a ball that is a
member to be counted by B′

i and thus Bi ≤ B′
i .

b)

Since Bi is computed at the end (after throwing all n balls), and the process
does not remove balls from bins – at every step the balls in each bin only
increase. So the number of bins with at least i balls is bounded by Bi.
Denote Bi,t the number of bins with at least i balls at time t and Bi,t ≤ Bi.

Pr [t ball chooses bin with at least i balls] =
(

Bi,t

n

)2

≤
(

Bi

n

)2

.

c)

Fix some i ⩾ 3 and Bi (conditioning on Bi being some number). Denote
X1, . . . , Xn the indicator for the j-th ball when thrown, were the (i + 1)-th or
more in their chosen bin.

E[B′
i+1] = E

[
n

∑
j=1

Xj

]
=

n

∑
j=1

Pr[Xj] ≤ n ·
(

Bi

n

)2

=
B2

i
n

.

d)
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In expectation, we see the following,

E[Bi+1] ≤ E[E[B′
i+1 | Bi]] ≤ E

[
B2

i
n

]
.

Now, handwaving (this is not a full, valid proof), we assume that “things
behave exactly like their expectation:” Bi ≈ E[Bi]. We proceed by induction

with B2 ≤ n
2 and Bi+1 ≤ B2

i
n .

For k = 2, we have B2 ≤ n
2 .

Now suppose Bk ≤ n
22k−2 , then

Bk+1 ≤
B2

k
n

≤

(
n

22k−2

)2

n
≤

n2

22k−1

n
=

n
22k−1 .

e)

Solving the inequality:

1 ≤ n
22i−2 ⇒ 22i−2 ≤ n ⇒ 2i−2 ≤ log2 n ⇒ i ≤ 2 + log2 log2 n.

This tells us that the largest number i for which there is at least one bin with
at least i balls is not more log2 log2 n + 2. That’s just a contrived way to say
that the maximum load is at most log2 log2 n + 2, since the maximum load is
the maximum number i of balls that can be found in at least one bin.

f)

For d ≥ 2 choices, one can go through the same steps as above to see that the
recurrence becomes

Bi+1 ≤
Bd

i
nd−1 .

Solving it gives the claimed bound.

g)

Problem 6. Let’s get back to throwing n balls into n bins independently and uni-
formly at random. Show that, for large enough n, the expected number of empty
bins approaches n/e, where e ≈ 2.718 is the base of the natural logarithm.

Solution 6. See Solution to Problem 1. It only remains to show (if you do not want
to take it for granted) that

lim
n→∞

(1 − 1/n)n = e−1

or, equivalently (since (1 − 1/n)n = e
ln(1−1/n)

(1/n) , that

lim
n→∞

ln(1 − 1/n)
(1/n)

= −1

Setting f (x) = ln(1 − x) (such that f (0) = 0, this would be showing that f ′(0) =

limx→0
f (x)− f (0)

x = −1, which could can easily check by differentiating f .
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Problem 7. You have been playing the Australian 1st Division lottery, which re-
quires you to guess correctly 6 numbers out of 45 to win. You have consistently
lost, and are suspecting the lottery is rigged.

If the lottery was fair, what is the probability that your ticket (a single ticket)
wins? Call this probability p.

a)

Assuming the total prize is $30, 000, 000 and a ticket is $0.60, what is the
expected reward if you play one ticket? 100 (different) tickets?

b)

You suspect that half of the possible outcomes actually never show up, due
to an issue in the lottery design or some foul play. Of course, you don’t have
much to back this up, and have no idea which half of the outcomes would still
show up. As a function of p (in big-Oh notation), how many tickets would
you need to play before having any statistical evidence to prove or disprove
your suspicion?

c)

Solution 7.

All possible guesses (45
6 ). Suppose the draw is uniformly at random,

Pr [win] =
1

(45
6 )

= p.

a)

Denote X as the random variable for how much money one would win/lose
from one ticket.

Pr[X = 30, 000, 000 − 0.6] =
1

(45
6 )

= p and Pr[X = −0.6] = 1 − 1

(45
6 )

= 1 − p.

E[X] = 3 × 107p − 0.6 = 3 × 107 × 1

(45
6 )

− 0.6 ≈ 3.08.

Playing 100 games, by linearity of expectation, one gets ≈ 308. Note: this is not
realistic. In real life, the expected gain is negative. Do not take this as an incentive to
gamble!

b)

If you do not observe a collision, all you see is a sequence of unique numbers:
which reveals absolutely nothing about what the underlying distribution of
outcomes is. Put differently, conditioned on not seeing a collision, what you ob-
serve has exactly the same probability under (1) the uniform distribution over
the (45

6 ) outcomes, and (2) a distribution only uniform over an (unknown) sub-
set of half these outcomes. So to have a chance to conclude anything, you need
to make enough observations to have a decent chance to observe a collision
(in at least one of the two cases) – which, by the birthday paradox seen in
class, will be after playing Ω(

√
n) tickets, where here n = 1/p = 1

2(
45
6 ).

c)
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Advanced

Problem 8. (Poissonization. ⋆⋆) In the setting of Problem 4, suppose that instead of
throwing m balls, we first draw the value M ∼ Poi(m), and then throw M inde-
pendent balls into the n bins. Let N1, . . . , Nn the number of balls falling into bins
1, 2, . . . n respectively.

Show that N1, . . . , Nn are independent.a)

Rewrite the number of collisions c̃(m, n) as a function of N1, . . . , Nn.b)

Compute E[c̃(m, n)].c)

Compute Var[c̃(m, n)].d)

Conclude by giving a bound on the number m sufficient to approximate ∥p∥2
to within a factor 2 with probability at least 9/10.

e)

Solution 8.

We will show (a stronger statement) that Nj ∼ Poi(mpj) independently. In-
deed, we show that for every possible k1, . . . , k j satisfying the following,

n

∑
j=1

k j =
n

∑
j=1

Nj = M = k,

its probability mass function can be written as follows:

∑
k1,...,kn :∑ kj=k

n

∏
j=1

Pr[Nj = k j] = ∑
k1,...,kn :∑ kj=k

n

∏
j=1

(mpj)
kj e−mpj

k j!

= ∑
k1,...,kn :∑ kj=k

m∑n
j=1 kj e−∑n

j=1 mpj
n

∏
j=1

p
kj
j

k j!

= mke−m ∑
k1,...,kn :∑ kj=k

n

∏
j=1

p
kj
j

k j!

=
mke−m

k!
,

= Pr[M = k],

where the second last equality is obtained via the multinomial theorem (note:
this may not be the most elegant proof)
Some other proof references: see, e.g.,

• https://people.csail.mit.edu/ronitt/COURSE/F20/Handouts/scribe14.pdf

• https://math.stackexchange.com/a/1355399/75808.

a)
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The number of collision in the i-th bin is simply (Ni
2 ). We can then rewrite

c̃(m, n) =
n

∑
i=1

(
Ni

2

)
=

n

∑
i=1

N2
i − Ni

2
.

b)

Using the expression for the moments of a Poisson random variable (to be
computed, or available in a textbook or on Wikipedia!), we then get

E[c̃(m, n)] =
n

∑
i=1

E

[
N2

i − Ni

2

]
=

n

∑
i=1

(mpi)
2

2
=

m2

2
∥p∥2

2.

c)

Similarly, for the variance, thanks to independence we have

Var[c̃(m, n)] =
n

∑
i=1

Var
[(

Ni

2

)]
=

1
4

n

∑
i=1

Var
[

N2
i − Ni

]
and so this boils down to computing

Var
[

N2
i − Ni

]
= E

[
N4

i − 2N3
i + N2

i

]
− m2p2

i

for Ni ∼ Poisson(mpi). which can be done by expanding the square and a
sequence of (cumbersome) series manipulations. This will give

Var
[

N2
i − Ni

]
= m4p4

i + 4m3p3
i + m2p2

i

and so, summing over i,

Var[c̃(m, n)] =
1
4

m4∥p∥4
4 + m3∥p∥3

3 +
1
4

m2∥p∥2
2

d)

c) By Chebyshev’s inequality, setting X =
√

2
m2 c̃(m, n) as our estimator (which

9
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satisfies E
[
X2] = ∥p∥2

2 based on what we did above)

Pr[ X /∈ [∥p∥2/2, 2∥p∥2] ] = Pr
[

X2 /∈ [∥p∥2
2/4, 4∥p∥2

2]
]

≤ Pr
[
|X2 − E[X2]| ≥ 3

4
∥p∥2

2

]
≤ Var[X2]

(3/4)2∥p∥4
2
=

(2/m2)2 Var[c̃(m, n)]
(3/4)2∥p∥4

2

=
64

9m4∥p∥4
2

(
1
4

m4∥p∥4
4 + m3∥p∥3

3 +
1
4

m2∥p∥2
2

)
=

16
9
∥p∥4

4

∥p∥4
2
+

64
9m

∥p∥3
3

∥p∥4
2
+

1
4m2∥p∥2

2

Now, for the whole thing to be at most 1/10, it’s enough to choose m such that each
of the three terms is at most 1/30. For that, the last term implies we should make

sure m ≥ 1
2
√

30∥p∥2
, the second will require m ≥ 640∥p∥3

3
3∥p∥4

2
, and the first... is annoying,

as we have no control over it! It does not depend on m.... so what can we do? Looks
like we are in bad shape. . .

First, let’s simplify our task. By monotonicity of ℓq norms (for vector norms), we
have ∥p∥4 ≤ ∥p∥2 and ∥p∥3 ≤ ∥p∥2, and so we can bound our variance as

Var[c̃(m, n)] ≤ 1
4

m4∥p∥4
2 + m3∥p∥3

2 +
1
4

m2∥p∥2
2

at least we got rid of the annoying 3- and 4-norms... if we apply Chebyshev with
this (weaker, but simpler) variance bound, we get

Pr[ X /∈ [∥p∥2/2, 2∥p∥2] ] ≤
16
9
∥p∥4

2

∥p∥4
2
+

64
9m

∥p∥2
3

∥p∥4
2
+

1
4m2∥p∥2

2
=

16
9

+
(64/9)
m∥p∥2

+
1

4m2∥p∥2
2

.

The first term is still very bad, because it does not depend on m (and is definitely
bigger than 1). But here’s a simple trick: instead of using X2 as our estimate, take
T = 10 (for instance) independent copies X2

1, . . . , X2
T of X2, and use their average

Y = 1
T (X2

1, . . . , X2
T) as our estimate. The expectation doesn’t change (we just took

an average), but the variance decreases by T2 = 100! That will take care of the first
term, and only cost us T = 100 times as many samples... Now we get

Pr
[√

Y /∈ [∥p∥2/2, 2∥p∥2]
]
≤ 1

100

(
16
9

+
(64/9)
m∥p∥2

2
+

1
4m2∥p∥2

2

)
The first term is now always good: 16/900 < 1/30. The second term will be good
(less than 1/30) for m = Θ(1/∥p∥2). The third term will also be good (less than
1/30) for m = Θ(1/∥p∥2). So all together, it suffices to take m = Θ(1/∥p∥2)
samples to succeed with probability at least 9/10.

Last detail: but we don’t know ∥p∥2, that’s the whole point! How do we choose
m? Well, one can show that ∥p∥2 ≥ 1/

√
n always (try it), so it’s always enough to

take m = O(
√

n) samples...
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Problem 9. Go over the MGF-based proof that L(n) ≤ 2 ln n
ln ln(en) from the lecture notes.

Using the same approach, show that if X1, . . . , Xn are (not necessarily independent)
Gaussian random variables with mean zero and variance σ2, then

E

[
max

1≤i≤n
Xi

]
≤

√
2σ2 ln n .

As a corollary, show that

E

[
max

1≤i≤n
|Xi|

]
≤
√

2σ2 ln(2n) .

Solution 9. Let X1, . . . , Xn be N (0, σ2) and they do not have to be independent.

E[ max
1≤i≤n

Xi] =
1
t

E[ max
1≤i≤n

tXi]

=
1
t

E[ max
1≤i≤n

ln(exp(tXi))]

=
1
t

E[log( max
1≤i≤n

exp(tXi))] (monotonicity of log(·))

≤ 1
t

E

[
log

(
n

∑
i=1

exp(tXi)

)]

≤ 1
t

ln

(
E

[
n

∑
i=1

exp(tXi)

])
(Jensen)

=
1
t

ln(nE[exp(tX1)]) (linearity)

=
1
t

ln
(

n exp
(

1
2

σ2t2
))

=
ln n

t
+

1
2

σ2t ≤
√

2σ2 ln n.

Note that,
max

1≤i≤n
|Xi| = max

1≤i≤n
max(Xi,−Xi).

Of course, Xi and −Xi are not independent, but to apply the previous result they
do not need to be! So this problem can be reduced to Y1, . . . , Y2n ∼ N (0, σ2) and a
max over them. Applying the previous bound to this new problem with size of 2n,
we conclude the proof.
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