Warm-up

Problem 1. Suppose E_1 and E_2 are two *independent* events, each happening with probability *p*. What is the probability that at least one of them happens? Compare to what the union bound gives.

Generalise to *k* independent events E_1, \ldots, E_k each happening with probability *p*.

Problem 2. Prove Chebyshev's inequality using Markov's inequality.

Problem 3. Compute the expectation and variance of a $Poisson(\lambda)$ random variable. (Recall that if *X* ~ Poisson(λ), then Pr[$X = k$] = $e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^k}{k!}$ for any integer $k \geq 0$.)

Problem 4. Let *X* be a Binomial random variable with parameters *n* and *p*. Compute (or recall) the expectation and variance of *X*.

- a) Bound the probability that *X* deviates from its expectation by more than 2 [√]*np*.
- b) Suppose that $p = \frac{1}{4}$.
	- Use Markov's inequality to bound $Pr[X \ge n/2]$.
	- Use Chebyshev's inequality to bound $Pr[X \ge n/2]$.
	- Use the Chernoff bound to bound $Pr[X \ge n/2]$.
	- Use Hoeffding's bound to bound $Pr[X \ge n/2]$.
	- Compare the 4 bounds.

c) Suppose now that $p = \frac{1}{2n}$.

- Use Markov's inequality to bound $Pr[X \geq 1]$.
- Use Chebyshev's inequality to bound $Pr[X \ge 1]$. Comment.
- Use the Chernoff bound to bound $Pr[X \geq 1]$.
- Use Hoeffding's bound to bound $Pr[X \geq 1]$.
- Compute $Pr[X \ge 1]$ exactly, and compare the bounds obtained.

Problem solving

Problem 5. Prove Theorem 8 of the lecture notes:

Let *A* be a Monte Carlo algorithm with worst-case running time $T(n)$ and constant failure probability $p \in (0,1)$, with the following extra guarantee: one can detect whether the output of *A* is incorrect in time *O*(1).

Then there exists a *Las Vegas* algorithm *A'* for the same task with expected running time $O(T(n))$ (where the hidden constant in the $O(\cdot)$ depends on *p*).

Problem 6. Suppose that we have two Monte Carlo algorithms *A* and *B* for a decision problem *P*, with the following behaviour: on any input *x*,

- if the true answer $P(x)$ is yes, then *A* outputs yes with probability at least $1/2$, while *B* outputs yes with probability one.
- if the true answer $P(x)$ is no, then *A* outputs no with probability one, while *B* outputs no with probability at least 1/2.

Both *A* and *B* run in worst-case time $T(|x|)$. Using *A* and *B*, design a Las Vegas algorithm *C* for *P*. Analyse its expected running time.

Problem 7. Let *A* be a randomised algorithm which, on input *x*, consumes (at most) *T* "resources" and uses (at most) *r* random bits, outputs good or bad, such that

- If *x* is good, then $Pr[A(x) = \text{good}] > 9/10$;
- If *x* is bad, then $Pr[A(x) = good] \le 1/10$.

For any $\delta \in (0,1]$, give a randomised algorithm A' such that, on input *x*,

- If *x* is good, then $Pr[A(x) = good] \ge 1 \delta$;
- If *x* is bad, then $Pr[A(x) = \text{good}] \le \delta$.

Bound the amount of resources T' and random bits r' this algorithm A' uses.

Problem 8. Similar, but a little different: Let *A* be a randomised algorithm which, on input x , consumes (at most) T "resources" and uses (at most) r random bits, outputs good or bad, such that

- If *x* is good, then $Pr[A(x) = \text{good}] \ge 1/10$;
- If *x* is bad, then $Pr[A(x) = good] = 0$.

For any $\delta \in (0,1]$, give a randomised algorithm A' such that, on input *x*,

- If *x* is good, then $Pr[A(x) = \text{good}] > 1 \delta$;
- If *x* is bad, then $Pr[A(x) = good] = 0$.

Bound the amount of resources T' and random bits r' this algorithm A' uses.

Problem 9. We will prove (a simplified version of) the Chernoff bound. Namely, given X_1, \ldots, X_n i.i.d. random variables taking values in $\{0,1\}$, each with expectation *p*, set $X = \sum_{i=1}^{n} X_i$. We will show that

$$
\Pr[X > (1 + \gamma)\mathbb{E}[X]] \le e^{-\gamma^2 \mathbb{E}[X]/3}, \quad \gamma \in (0, 1]
$$

In what follows, fix any $\gamma \in (0,1]$.

a) Show that, for every $t > 0$,

$$
Pr[X > (1 + \gamma)E[X]] = Pr\left[e^{tX} > e^{t(1 + \gamma)E[X]}\right].
$$

b) Deduce that, for every $t > 0$,

$$
\Pr[X > (1+\gamma)\mathbb{E}[X]] \leq \frac{\mathbb{E}\left[e^{tX_1}\right]^n}{e^{t(1+\gamma)\mathbb{E}[X]}}.
$$

c) Compute $\mathbb{E}\left[e^{tX_1}\right]$, and deduce that, for every $t > 0$,

$$
Pr[X > (1 + \gamma) \mathbb{E}[X]] \leq \frac{(1 + p(e^t - 1))^n}{e^{t(1 + \gamma)np}}.
$$

d) Use the inequality $ln(1 + x) \leq x$ to show that, for every $t > 0$,

$$
\Pr[X > (1+\gamma)\mathbb{E}[X]] \leq e^{-pn \cdot f(t)}.
$$

where $f(t) = (1 + \gamma)t - (e^t - 1)$.

e) Choose the best value of $t > 0$ (which is a free parameter) to show that

$$
Pr[X > (1+\gamma)\mathbb{E}[X]] \leq e^{-pn((1+\gamma)\ln(1+\gamma)-\gamma)}.
$$

Show (or take for granted, and verify by plotting the two functions) that $(1 +$ *γ*) ln(1 + *γ*) – *γ* \geq *γ*²/3 for all $\gamma \in$ (0,1]. Conclude.

Advanced

Problem 10. Use the same approach to show the "other side" of the Chernoff bound:

$$
\Pr[X < (1+\gamma)\mathbb{E}[X]] \leq e^{-\gamma^2 \mathbb{E}[X]/2}
$$

for $\gamma \in (0,1]$. Do you see how to generalise the above argument to $X_1, \ldots, X_n \in$ [0, 1]? To independent (but non-identically distributed) *X* ′ *i s*?

Problem 11. We will prove the *median trick*. Suppose that any given input *x* is associated with an interval $[a_x, b_x] \subseteq \mathbb{R}$ of "good values." We don't know this interval: our goal is, given any input x to find a good value for x with very high probability, say $1 - \delta$ for arbitarily small δ .

All we are given is an algorithm *A* which, on any input *x*, is guaranteed to output a good value with reasonably good probability. Specifically,

$$
Pr[A(x) < a_x] \leq \alpha, \qquad Pr[A(x) > b_x] \leq \alpha
$$

for some known constant *α* < 1/2. Consider the following algorithm *B*: on input *x*, run *A* on *x* independently *k* times, and output the median of all *k* values obtained.

- a) Analyse the probability that the output of *B* is a good value, as a function of *α* and *k*.
- b) Set the integer *k* to achieve our original goal: output a good value with probability at least $1 - \delta$.