
compx270 Tutorial 2: Concentration Bounds, and Tricks s2 2024

Warm-up

Problem 1. Suppose E1 and E2 are two independent events, each happening with
probability p. What is the probability that at least one of them happens? Compare
to what the union bound gives.

Generalise to k independent events E1, . . . , Ek each happening with probability
p.

Problem 2. Prove Chebyshev’s inequality using Markov’s inequality.

Problem 3. Compute the expectation and variance of a Poisson(λ) random variable.
(Recall that if X ∼ Poisson(λ), then Pr[ X = k ] = e−λ λk

k! for any integer k ≥ 0.)

Problem 4. Let X be a Binomial random variable with parameters n and p. Com-
pute (or recall) the expectation and variance of X.

Bound the probability that X deviates from its expectation by more than
2
√

np.
a)

Suppose that p = 1
4 .

• Use Markov’s inequality to bound Pr[ X ≥ n/2 ].

• Use Chebyshev’s inequality to bound Pr[ X ≥ n/2 ].

• Use the Chernoff bound to bound Pr[ X ≥ n/2 ].

• Use Hoeffding’s bound to bound Pr[ X ≥ n/2 ].

• Compare the 4 bounds.

b)

Suppose now that p = 1
2n .

• Use Markov’s inequality to bound Pr[ X ≥ 1 ].

• Use Chebyshev’s inequality to bound Pr[ X ≥ 1 ]. Comment.

• Use the Chernoff bound to bound Pr[ X ≥ 1 ].

• Use Hoeffding’s bound to bound Pr[ X ≥ 1 ].

• Compute Pr[ X ≥ 1 ] exactly, and compare the bounds obtained.

c)

Problem solving

Problem 5. Prove Theorem 8 of the lecture notes:

Let A be a Monte Carlo algorithm with worst-case running time T(n)
and constant failure probability p ∈ (0, 1), with the following extra guar-
antee: one can detect whether the output of A is incorrect in time O(1).
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Then there exists a Las Vegas algorithm A′ for the same task with ex-
pected running time O(T(n)) (where the hidden constant in the O(·)
depends on p).

Problem 6. Suppose that we have two Monte Carlo algorithms A and B for a
decision problem P, with the following behaviour: on any input x,

• if the true answer P(x) is yes, then A outputs yes with probability at least 1/2,
while B outputs yes with probability one.

• if the true answer P(x) is no, then A outputs no with probability one, while B
outputs no with probability at least 1/2.

Both A and B run in worst-case time T(|x|). Using A and B, design a Las Vegas
algorithm C for P. Analyse its expected running time.

Problem 7. Let A be a randomised algorithm which, on input x, consumes (at most)
T “resources” and uses (at most) r random bits, outputs good or bad, such that

• If x is good, then Pr[ A(x) = good ] ≥ 9/10;

• If x is bad, then Pr[ A(x) = good ] ≤ 1/10.

For any δ ∈ (0, 1], give a randomised algorithm A′ such that, on input x,

• If x is good, then Pr[ A(x) = good ] ≥ 1 − δ;

• If x is bad, then Pr[ A(x) = good ] ≤ δ.

Bound the amount of resources T′ and random bits r′ this algorithm A′ uses.

Problem 8. Similar, but a little different: Let A be a randomised algorithm which,
on input x, consumes (at most) T “resources” and uses (at most) r random bits,
outputs good or bad, such that

• If x is good, then Pr[ A(x) = good ] ≥ 1/10;

• If x is bad, then Pr[ A(x) = good ] = 0.

For any δ ∈ (0, 1], give a randomised algorithm A′ such that, on input x,

• If x is good, then Pr[ A(x) = good ] ≥ 1 − δ;

• If x is bad, then Pr[ A(x) = good ] = 0.

Bound the amount of resources T′ and random bits r′ this algorithm A′ uses.

Problem 9. We will prove (a simplified version of) the Chernoff bound. Namely,
given X1, . . . , Xn i.i.d. random variables taking values in {0, 1}, each with expecta-
tion p, set X = ∑n

i=1 Xi. We will show that

Pr[ X > (1 + γ)E[X] ] ≤ e−γ2E[X]/3, γ ∈ (0, 1]

In what follows, fix any γ ∈ (0, 1].
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Show that, for every t > 0,

Pr[ X > (1 + γ)E[X] ] = Pr
[

etX > et(1+γ)E[X]
]

.

a)

Deduce that, for every t > 0,

Pr[ X > (1 + γ)E[X] ] ≤
E
[
etX1

]n

et(1+γ)E[X]
.

b)

Compute E
[
etX1

]
, and deduce that, for every t > 0,

Pr[ X > (1 + γ)E[X] ] ≤ (1 + p(et − 1))n

et(1+γ)np
.

c)

Use the inequality ln(1 + x) ≤ x to show that, for every t > 0,

Pr[ X > (1 + γ)E[X] ] ≤ e−pn· f (t) .

where f (t) = (1 + γ)t − (et − 1).

d)

Choose the best value of t > 0 (which is a free parameter) to show that

Pr[ X > (1 + γ)E[X] ] ≤ e−pn((1+γ) ln(1+γ)−γ) .

Show (or take for granted, and verify by plotting the two functions) that (1 +
γ) ln(1 + γ)− γ ≥ γ2/3 for all γ ∈ (0, 1]. Conclude.

e)

Advanced

Problem 10. Use the same approach to show the “other side” of the Chernoff
bound:

Pr[ X < (1 + γ)E[X] ] ≤ e−γ2E[X]/2

for γ ∈ (0, 1]. Do you see how to generalise the above argument to X1, . . . , Xn ∈
[0, 1]? To independent (but non-identically distributed) X′

is?

Problem 11. We will prove the median trick. Suppose that any given input x is
associated with an interval [ax, bx] ⊆ R of “good values.” We don’t know this
interval: our goal is, given any input x to find a good value for x with very high
probability, say 1 − δ for arbitarily small δ.

All we are given is an algorithm A which, on any input x, is guaranteed to
output a good value with reasonably good probability. Specifically,

Pr[ A(x) < ax ] ≤ α, Pr[ A(x) > bx ] ≤ α
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for some known constant α < 1/2. Consider the following algorithm B: on input x,
run A on x independently k times, and output the median of all k values obtained.

Analyse the probability that the output of B is a good value, as a function of
α and k.

a)

Set the integer k to achieve our original goal: output a good value with prob-
ability at least 1 − δ.

b)
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