
compx270 Solution 2: Concentration Bounds, and Tricks s2 2024

Warm-up

Problem 1. Suppose E1 and E2 are two independent events, each happening with
probability p. What is the probability that at least one of them happens? Compare
to what the union bound gives.

Generalise to k independent events E1, . . . , Ek each happening with probability p.

Solution 1. The complementary events Ē1 and Ē2 are then independent as well, and
easier to work with:

Pr[ E1 ∪ E2 ] = 1 − Pr[ Ē1 ∩ Ē2 ] = 1 − Pr[ Ē1 ]Pr[ Ē2 ] = 1 − (1 − p)2 = 2p − p2

The union bound (which doesn’t require independence) gives

Pr[ E1 ∪ E2 ] ≤ Pr[ E1 ] + Pr[ E2 ] = 2p

which is asymptotically the same when p is small (the term p2 is negligible), and
much easier to derive.

For k events, we similarly have

Pr[ E1 ∪ · · · ∪ Ek ] = 1 − (1 − p)k = 1 −
k

∑
ℓ=0

(
k
ℓ

)
(−1)ℓpℓ = kp −

k

∑
ℓ=2

(
k
ℓ

)
(−1)ℓpℓ

which is quite cumbersome. But gain, even without independence the union bound
directly gives the “pretty good bound”

Pr[ E1 ∪ · · · ∪ Ek ] ≤ kp

which will suffice most of the time.

Problem 2. Prove Chebyshev’s inequality using Markov’s inequality.

Solution 2. As seen during the lecture, we apply Markov’s inequality to the non-
negative random variable Y = (X − E[X])2: for every t > 0,

Pr[ |X − E[X]| ≥ t ] = Pr
[√

Y ≥ t
]
= Pr

[
Y ≥ t2

]
≤ E[Y]

t2 =
Var[X]

t2

(Justify each step.)

Problem 3. Compute the expectation and variance of a Poisson(λ) random variable.
(Recall that if X ∼ Poisson(λ), then Pr[ X = k ] = e−λ λk

k! for any integer k ≥ 0.)

Solution 3. Manipulating the infinite sums. For instance, for the expectation: if
X ∼ Poisson(λ), then

E[X] =
∞

∑
k=0

k · e−λ λk

k!
= e−λ

∞

∑
k=1

k · λk

k!
= λ · e−λ

∞

∑
k=1

λk−1

(k − 1)!
= λ · e−λ

∞

∑
ℓ=0

λℓ

ℓ!︸ ︷︷ ︸
=1

= λ
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For the variance, compute E
[
X2] similarly, then subtract E[X]2 = λ2. The answer

is again λ.

Problem 4. Let X be a Binomial random variable with parameters n and p. Com-
pute (or recall) the expectation and variance of X.

Bound the probability that X deviates from its expectation by more than
2
√

np.
a)

Suppose that p = 1
4 .

• Use Markov’s inequality to bound Pr[ X ≥ n/2 ].

• Use Chebyshev’s inequality to bound Pr[ X ≥ n/2 ].

• Use the Chernoff bound to bound Pr[ X ≥ n/2 ].

• Use Hoeffding’s bound to bound Pr[ X ≥ n/2 ].

• Compare the 4 bounds.

b)

Suppose now that p = 1
2n .

• Use Markov’s inequality to bound Pr[ X ≥ 1 ].

• Use Chebyshev’s inequality to bound Pr[ X ≥ 1 ]. Comment.

• Use the Chernoff bound to bound Pr[ X ≥ 1 ].

• Use Hoeffding’s bound to bound Pr[ X ≥ 1 ].

• Compute Pr[ X ≥ 1 ] exactly, and compare the bounds obtained.

c)

Solution 4.

Since the variance of X ∼ Bin(n, p) is Var[X] = np(1 − p) ≤ np, Chebyshev’s
inequality gives Pr

[
|X − E[X]| ≥ 2

√
np

]
≤ np

(2
√

np)2 = 1
4 .

a)
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• With Markov’s, we get Pr[ X ≥ n/2 ] ≤ np
(n/2) = 2p = 1/2

• The variance is Var[X] = np(1 − p) = 3n/16 and the expectation is
E[X] = n/4, so the bound we get via Chebyshev’s is

Pr[ X ≥ n/2 ] = Pr[ X − n/4 ≥ n/4 ] ≤ Pr[ |X − n/4| ≥ n/4 ] ≤ 3n/16
(n/4)2 =

3
n

• We apply the Chernoff bound with γ = 1 and P = E[X] = n/4:

Pr
[

X ≥ n
2

]
= Pr[ X ≥ 2E[X] ] ≤ e−

γ2E[X]
3 = e−

n
12

• We apply Hoeffding’s bound with t = n/4, E[X] = n/4, and ai = 0, bi =
1 for all 1 ≤ i ≤ n:

Pr
[

X ≥ n
2

]
= Pr[ X ≥ E[X] + t ] ≤ e

− 2t2

n(1−0)2 = e−
n
8

• The bound obtained with Markov’s inequality is the weakest (it does not
even go to 0 as n grows). Chebyshev’s is better in that regard, as the
bound obtained decreases with n (technically, better than Markov’s for
n ≥ 6): but it still only decreases polynomially. In contrast, both the
Chernoff and Hoeffding bounds give upper bound that decrease expo-
nentially fast with n, that is, of the form e−Θ(n)). In this particular setting,
the result given by the Hoeffding’s bound is slightly better than the Cher-
noff bound (the constant in the exponent is better).

That exponential decay is much stronger “for n large enough”, and is
typically better: but due to the constants in the exponent, etc., it only
really kicks in for n ≫ 1.

b)

3



compx270 Solution 2: Concentration Bounds, and Tricks s2 2024

• Same result: 1/2

• Chebyshev now yield a bound of 4(1− 1/2n), which is a vacuous bound
(more than 1 – probabilities are at most 1).

• e−1/6 ≈ 0.85 (setting γ = 1, P = 1/2)

• e−1/(2n) ≈ 1 − 1/(2n) (setting t = 1/2, ai = 0, bi = 1). Almost vacuous.

• Note that none of the bounds above decays to zero as n grows... Which
is maybe to be expected: the expectation itself is 1/2, it looks like n is not
really “in the picture” here?
We can compute the probability exactly as

Pr[ X ≥ 1 ] = 1 − Pr[ X = 0 ] = 1 − (1 − 1/(2n))n ≈ 1 − e−1/2 ≈ 0.39

Maybe surprisingly, Markov is better here!

Side note: in this parameter regime where the probability p = p(n) is
such that limn→∞ np = λ for some constant λ > 0 (here λ = 1/2), a
Binomial random variable with parameters n, p “behaves like” (in some
formal sense) a Poisson random variable with parameter λ. And you can
check that if X ∼ Poi(λ), then Pr[ X ≥ 1 ] = 1 − Pr[ X = 0 ] = 1 − e−λ =
1 − e−1/2 ≈ 0.39.

c)

Problem solving

Problem 5. Prove Theorem 8 of the lecture notes:

Let A be a Monte Carlo algorithm with worst-case running time T(n)
and constant failure probability p ∈ (0, 1), with the following extra guar-
antee: one can detect whether the output of A is incorrect in time O(1).
Then there exists a Las Vegas algorithm A′ for the same task with ex-
pected running time O(T(n)) (where the hidden constant in the O(·)
depends on p).

Solution 5. See lecture video: we repeat a (new) call to A and a check of the
output until one iteration gives a correct output. Each repetition takes take time
T + O(1) = O(T), and the probability that we do at least k ≥ 0 repetitions is the
probability the first k − 1 failed to result in a good output, which happens with
probability pk−1. So we have

E[running time] =
∞

∑
k=1

O(T) · pk−1 = O(T) ·
∞

∑
k=0

pk = O(T) · 1
1 − p

= O(T/(1 − p)).
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Problem 6. Suppose that we have two Monte Carlo algorithms A and B for a
decision problem P, with the following behaviour: on any input x,

• if the true answer P(x) is yes, then A outputs yes with probability at least 1/2,
while B outputs yes with probability one.

• if the true answer P(x) is no, then A outputs no with probability one, while B
outputs no with probability at least 1/2.

Both A and B run in worst-case time T(|x|). Using A and B, design a Las Vegas
algorithm C for P. Analyse its expected running time.

Solution 6. The idea is, on input x, to run both A and B on x (with independent
random bits for each). If A outputs “yes”, then we know the true answer is “yes”
(by the contrapositive of the second bullet); if B outputs “no”, we know the answer
is “no” (by the contrapositive of the first bullet). If A outputs “no” and B outputs
“yes”, then we don’t know for sure, so we repeat (until one of the two cases above
occurs). We can check that

• If P(x) is yes, then Pr[ A outputs “no” and B outputs “yes” ] ≤ 1/2.

• If P(x) is no, then Pr[ A outputs “no” and B outputs “yes” ] ≤ 1/2.

So in ether case, the probability we have to repeat at a given step k is ≤ 1/2, and
so, the expect running time is at most (T(|x|) + T(|x|)) · ∑∞

k=0(1/2)k = O(T(|x|)).

Problem 7. Let A be a randomised algorithm which, on input x, consumes (at most)
T “resources” and uses (at most) r random bits, outputs good or bad, such that

• If x is good, then Pr[ A(x) = good ] ≥ 9/10;

• If x is bad, then Pr[ A(x) = good ] ≤ 1/10.

For any δ ∈ (0, 1], give a randomised algorithm A′ such that, on input x,

• If x is good, then Pr[ A(x) = good ] ≥ 1 − δ;

• If x is bad, then Pr[ A(x) = good ] ≤ δ.

Bound the amount of resources T′ and random bits r′ this algorithm A′ uses.

Solution 7. Repeat k times, for an integer k = k(δ) to be determined, and take a
majority vote. Consider two approaches to analyse the number of repetitions: via
Chebyshev, and via Hoeffding/Chernoff. Compare.

Problem 8. Similar, but a little different: Let A be a randomised algorithm which,
on input x, consumes (at most) T “resources” and uses (at most) r random bits,
outputs good or bad, such that

• If x is good, then Pr[ A(x) = good ] ≥ 1/10;

• If x is bad, then Pr[ A(x) = good ] = 0.
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For any δ ∈ (0, 1], give a randomised algorithm A′ such that, on input x,

• If x is good, then Pr[ A(x) = good ] ≥ 1 − δ;

• If x is bad, then Pr[ A(x) = good ] = 0.

Bound the amount of resources T′ and random bits r′ this algorithm A′ uses.

Solution 8. Similar, but this time all we need to conclude is to see good be returned
at least once (since this can only happen when x is truly good): if it never happens
in k repetitions, we can return bad. The probability that good doesn’t happen in k
repetitions when x is good is at most (1 − 1/10)k = (9/10)k, so we only need to
choose k so that (9/10)k ≤ δ, which leads to k = ⌈log10/9(1/δ)⌉.
Note: an algorithm which can only err in one of two cases is called an algorithm
with one-sided error.

Problem 9. We will prove (a simplified version of) the Chernoff bound. Namely,
given X1, . . . , Xn i.i.d. random variables taking values in {0, 1}, each with expecta-
tion p, set X = ∑n

i=1 Xi. We will show that

Pr[ X > (1 + γ)E[X] ] ≤ e−γ2E[X]/3, γ ∈ (0, 1]

In what follows, fix any γ ∈ (0, 1].

Show that, for every t > 0,

Pr[ X > (1 + γ)E[X] ] = Pr
[

etX > et(1+γ)E[X]
]

.

a)

Deduce that, for every t > 0,

Pr[ X > (1 + γ)E[X] ] ≤
E
[
etX1

]n

et(1+γ)E[X]
.

b)

Compute E
[
etX1

]
, and deduce that, for every t > 0,

Pr[ X > (1 + γ)E[X] ] ≤ (1 + p(et − 1))n

et(1+γ)np
.

c)

Use the inequality ln(1 + x) ≤ x to show that, for every t > 0,

Pr[ X > (1 + γ)E[X] ] ≤ e−pn· f (t) .

where f (t) = (1 + γ)t − (et − 1).

d)
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Choose the best value of t > 0 (which is a free parameter) to show that

Pr[ X > (1 + γ)E[X] ] ≤ e−pn((1+γ) ln(1+γ)−γ) .

Show (or take for granted, and verify by plotting the two functions) that (1 +
γ) ln(1 + γ)− γ ≥ γ2/3 for all γ ∈ (0, 1]. Conclude.

e)

Solution 9.

This follows from recalling that Pr[ X > Y ] = Pr[ f (X) > f (Y) ] for any in-
creasing function f , and applying that to f (x) = etx. (Increasing for any fixed
t > 0.)

a)

First, Markov’s inequality, then independence of X1, . . . , Xn (and the fact they
are identically distributed):

Pr
[

etX > et(1+γ)E[X]
]
≤

E
[
etX]

et(1+γ)E[X]
=

E
[
e∑n

i=1 tXi
]

et(1+γ)E[X]
=

∏n
i=1 E

[
etXi

]
et(1+γ)E[X]

=
E
[
etX1

]n

et(1+γ)E[X]

b)

Since X1 ∼ Bern(p),

E
[
etX1

]
= p · et·1 + (1 − p) · et·0 = 1 + p(et − 1)

and for the denominator we also have E[X] = np by linearity of expectation.
Note: when it exists, the function ϕ(t) = E

[
etX1

]
is called the moment-generating

function (MGF) of X1.

c)
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We have shown so far that (for any t > 0) Pr[ X > (1 + γ)E[X] ] ≤ (1+p(et−1))n

et(1+γ)np ..
Using the suggested inequality, we can bound the RHS further:

(1 + p(et − 1))n

et(1+γ)np
=

en ln(1+p(et−1))

et(1+γ)np
≤ enp(et−1)

et(1+γ)np
= enp((et−1)−t(1+γ)) = e−np· f (t)

where f (t) = (1 + γ)t − (et − 1), as stated in the question.
We introduced our “free parameter” t > 0 early on for a reason: the inequality

Pr[ X > (1 + γ)E[X] ] ≤ e−np· f (t)

holds for every choice of t > 0 (every choice of t > 0 we make gives a valid
bound), so now we get to pick the best possible one to make the inequality
as strong as possible (i.e., the RHS as small as possible). This corresponds to
finding t > 0 maximizing f (t), for which we can use calculus. f is smooth,
etc., so we can differentiate:

f ′(t) = (1 + γ)− et

and after solving f ′(t) = 0 we can easily check that the critical point t =
ln(1 + γ) > 0 is a maximum for f . Choosing this value of t gives

Pr[ X > (1 + γ)E[X] ] ≤ e−np· f (ln(1+γ)) = e−np·((1+γ) ln(1+γ)−γ)

Now, we can again show the suggested inequality

(1 + γ) ln(1 + γ)− γ ≥ γ2/3, γ ∈ [0, 1]

by calculus (studying the function γ 7→ (1+γ) ln(1+γ)−γ
γ2 , for instance); assuming

this inequality, we get

Pr[ X > (1 + γ)E[X] ] ≤ e−np· f (ln(1+γ)) = e−np· γ2
3 = e−

γ2E[X]
3

and we are done.
Tip: a Taylor expansion at γ = 0 of (1 + γ) ln(1 + γ)− γ gives

(1 + γ) ln(1 + γ)− γ =
γ2

2
− O(γ3)

so the γ2 dependence is tight (cannot be improved), and suggest why we
might try to show this inequality in the first place. The constant 3 might be
slightly improvable, but that’s not critical.

d)

Advanced
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Problem 10. Use the same approach to show the “other side” of the Chernoff
bound:

Pr[ X < (1 + γ)E[X] ] ≤ e−γ2E[X]/2

for γ ∈ (0, 1]. Do you see how to generalise the above argument to X1, . . . , Xn ∈
[0, 1]? To independent (but non-identically distributed) X′

is?

Problem 11. We will prove the median trick. Suppose that any given input x is
associated with an interval [ax, bx] ⊆ R of “good values.” We don’t know this
interval: our goal is, given any input x to find a good value for x with very high
probability, say 1 − δ for arbitrarily small δ.

All we are given is an algorithm A which, on any input x, is guaranteed to
output a good value with reasonably good probability. Specifically,

Pr[ A(x) < ax ] ≤ α, Pr[ A(x) > bx ] ≤ α

for some known constant α < 1/2. Consider the following algorithm B: on input x,
run A on x independently k times, and output the median of all k values obtained.

Analyse the probability that the output of B is a good value, as a function of
α and k.

a)

Set the integer k to achieve our original goal: output a good value with prob-
ability at least 1 − δ.

b)

Solution 11. Sketch: The key insight is that the median of k outputs is less than ax
if, and only if, more than k/2 of these values are less than ax. But each of these
k things happens independently with probability at most α < 1/2, so we can use
either a Chernoff or Hoeffding bound to get that

Pr
[

more than
k
2

values are less than ax

]
≤ e−Θ(k)

By setting k ≥ C · log(2/δ) for a suitable constant C > 0, the RHS of that bound is
at most δ/2. We can do a similar analysis for the probability to be more than bx,
and then take a union bound over both events (this is why we chose δ/2 above) to
get that the probability the median is in [ax, bx] is at least 1 − δ.

Note: here we really had to use the fact that α < 1/2 for it to work (can you
see why?). We can do things a bit more directly and faster if our assumption is
Pr[ A(x) /∈ [ax, bx] ] ≤ α < 1/2 (then we only have one event to handle for the
median, not both + a union bound), but this is a stronger assumption (again, can
you see why?).
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