Warm-up

Problem 1. Try various parameters for Theorem 60: plot, for $\beta \in (0,1)$, the bound, when

- $C^* = 0, n = 1000$
- $C^* = 10, n = 1000$
- $C^* = 100, n = 1000$
- $C^* = 1000, n = 1000$

Do the same for Theorem 61.

Solution 1. Try it at home! Here in Mathematica:

Problem 2. Assume you know both n and (an upper bound on) C^* in advance. How would you set $β$ in the MWU? In the Randomised MWU?

Solution 2. Given explicit values: differentiate the expressions to find the minimum (or find the minimum numerically).

To find a reasonable approximation (up to a factor 2): choose *β* to balance the two terms in the numerator,

$$
C^* \log(1/\beta) = \log n
$$

This might not be th exact minimum, but will be within a constant factor, and is much simpler to derive.

Problem 3. Prove Fact 56.3: namely, consider $n = 2$ experts, one predicting always 0 and the other always 1, and consider all 2^T possible sequences (u_1, \ldots, u_T) . Show that for any deterministic algorithm *A*, there exists a sequence on which the algorithm makes *T* mistakes, and use this to conclude.

Solution 3. Same reasoning and construction as Fact 56.1, but need to also show that *C* ∗ (*T*) is at most *T*/2 (best expert will make at most *T*/2 mistakes). Note that since one expert always outputs 0 and the other always 1, the best expert will make at most *T*/2 mistakes: denote $S_1 = \{t \in [T] : u_t = 0\}$ and $S_2 = [T] \setminus S_1$, expert 1 will be correct $|S_1|$ times and expert 2 correct for $|S_2|$ times –

$$
\max\{|S_1|, |S_2|\} = \max\{|S_1|, T - |S_1|\} \geq T/2
$$

Suppose given algorithm *A* (you can predict what it will output every step)

- 1) observes $\{0,1\}$, predict *A*'s output \hat{u}_1 . Set $u_1 \leftarrow 1 \hat{u}_1$.
- 2) observes $\{u_1, 0, 1\}$, predict *A*'s output \hat{u}_2 . Set $u_2 \leftarrow 1 \hat{u}_2$.
- 3) observes $\{u_1, u_2, 0, 1\}$, predict *A*'s output \hat{u}_3 . Set u_3 ← 1 − \hat{u}_3 .
- etc. until *T*.

So your algorithm will make *T* mistakes while best expert will make at most *T*/2. The factor 2 is necessary for deterministic algorithms.

Problem solving

Problem 4. Suppose $C^* = C^*(T)$ is known in advance. We will show how to modify the MWU algorithm to achieve

$$
C(T) \le 2C^* + O(\sqrt{C^*(T)\log n} + \log n)
$$

- a) Argue that, if $C^* \leq \log n$, we are done.
- b) Suppose C^* > $\log n$. Show how to achieve the desired bound by setting *β* = 1 – *ε*, for some suitable $\varepsilon = \varepsilon(C^*, n)$.
- c) Conclude.

Solution 4.

a) If $C^* \leq 4 \log n$, then we set $\beta = \frac{1}{2}$.

$$
\frac{C^* \log \frac{1}{\beta} + \log n}{\log \frac{2}{1+\beta}} \leqslant 2.41 (C^* + \log n) \leqslant O(\log n).
$$

b) We need some approximation facts first. For $\varepsilon \in (0, 0.5)$, we have $\varepsilon \leqslant \log \frac{1}{1-\varepsilon} \leqslant$ 2*ε* and

$$
\frac{\log \frac{1}{1-\varepsilon}}{\log \frac{1}{1-\varepsilon/2}} = 2 + \frac{\varepsilon}{2} + O(\varepsilon^2) \leq 2 + \varepsilon.
$$

by series expansion. We restrict $1 - \beta = \epsilon < \frac{1}{2}$. We proceed with the calculation:

$$
C^* \frac{\log \frac{1}{\beta}}{\log \frac{2}{1+\beta}} + \frac{\log n}{\log \frac{2}{1+\beta}} = C^* \frac{\log \frac{1}{1-\epsilon}}{\log \frac{1}{1-\epsilon/2}} + \frac{\log n}{\log \frac{1}{1-\epsilon/2}}
$$

\n
$$
\leq C^* \cdot (2+\epsilon) + \frac{\log n}{\epsilon}
$$

\n
$$
= 2C^* + C^* \epsilon + \frac{\log n}{\epsilon}
$$

\n
$$
\leq 2C^* + C^* \sqrt{\log n/C^*} + \frac{\log n}{\sqrt{\log n/C^*}}
$$

\n
$$
= 2C^* + 2\sqrt{C^* \log n}
$$

Note that we need $\varepsilon = \sqrt{\log n/C^*} < \frac{1}{2}$, or, equivalently, $\frac{\log n}{C^*} < \frac{1}{4}$. (This motivates in hindsight question a)).

c) Combining the two, we have that

$$
\frac{C^* \log \frac{1}{\beta} + \log n}{\log \frac{2}{1+\beta}} \leqslant 2C^* + O\left(\sqrt{C^* \log n} + \log n\right).
$$

Problem 5. We again have *n* experts, each making a binary prediction at each time step. However, we would like to make sure we do well even if the best expert does badly overall, as long as for each "chunk" $I_{t_1,t_2} = \{t_1, t_1 + 1, ..., t_2 - 1, t_2\}$, we do well compared to the best expert *for this chunk*.

To try and get this, consider the variant of the MWU, where we only penalise an expert by multiplying its weight by 1/2 *if its current weight is at least* 1/3 *of the average weight of all experts*.

We want to show that for every $1 \le t_1 \le t_2 \le T$, the maximum number of mistakes $C(t_1, t_2)$ that the algorithm makes over I_{t_1, t_2} is at most $O(C^*(t_1, t_2) + \log n)$, where $C^*(t_1, t_2)$ is the number of mistakes made by the best expert *in that chunk*. (Considering $\beta \in (0,1)$ to be a constant, e.g., $\beta = 1/2$.)

- a) Write down the algorithm.
- b) Consider any chunk $I = I_{t_1,t_2}$, and let $t \in I$ be a time step where a mistake is made. Let *W^t* be the total weight at the beginning of step *t*, and *WG*, *WB*, *W^L* be the total weight of (1) experts who made a mistake, (2) experts who did not, and (3) experts who made a mistake but have weight less than $\frac{1}{3} \cdot \frac{W}{n}$ $\frac{y}{n}$. Bound the weight W_{t+1} at the end of step *t* as a function of W_G , W_B , W_L , β .
- c) Bound the weight W_{t+1} at the end of step *t* as a function of W_t , β : show that

$$
W_{t+1} \leq \frac{5+\beta}{6}W_t
$$

d) Give a lower bound on the weight w_{i,t_1} of any expert i at time t_1 (start of the chunk). Namely, show that

$$
w_{i,t_1} \geq \frac{\beta W_{t_1}}{3n}, \qquad 1 \leq i \leq n
$$

e) Letting W_{t_1} the total weight at the beginning of the chunk, and W_{t_2} at the end, show that

$$
W_{t_2} \geq \beta^{C^*(t_1,t_2)} \cdot \frac{\beta W_{t_1}}{3n}
$$

f) Conclude.

Solution 5.

b), c) If we make a mistake at time *t*, the algorithm will have $W_G > W_B$ and thus

$$
W_G \geq \frac{1}{2}(W_G + W_B) = \frac{1}{2}W_t.
$$

And we have $W_L \leq \frac{1}{3}W_t$,

$$
W_{t+1} = \beta W_G + W_B + (1 - \beta)W_L
$$

= $W_G + W_B + (1 - \beta)(W_L - W_G)$
 $\leq W_t + (1 - \beta) \left(\frac{1}{3}W_t - \frac{1}{2}W_t\right)$
= $W_t - \frac{1 - \beta}{6} = \frac{5 + \beta}{6}.$

d) Denote by \tilde{W} the total weight when expert *i* got penalised before t_1 . Since we only decrease weights as time progress, we have $\tilde{W} \geq W_{t_1}$. If *i* gets penalised and denote its weight at that time \tilde{w}_i , it must at the time have

$$
\tilde{w}_i \geqslant \frac{\tilde{W}}{3n}.
$$

And $w_{i,t_1} = \beta \tilde{w}_i \geqslant \frac{\beta \tilde{W}}{3n} \geqslant \frac{\beta W_{t_1}}{3n}$ $\frac{n_1}{3n}$. If expert *i* has not been penalised up until t_1 , we know that $w_{t_1} = 1$ and therefore $w_{t_1} = 1 \geqslant \frac{\beta W_{t_1}}{3n}$ $rac{m_1}{3n}$.

e) The best expert makes at most $C^{*(t_1,t_2)}$ mistakes; let *j* be the index of that expert. Then,

$$
w_{j,t_2} \geq \beta^{C^{*(t_1,t_2)}} w_{j,t_1} \geq \beta^{C^{*(t_1,t_2)}} \frac{\beta W_{t_1}}{3n}.
$$

Finally,

$$
W_{t_2} = \sum_{i=1}^n w_{i,t_2} \geq w_{j,t_2} \geq \beta^{C^{*(t_1,t_2)}} \frac{\beta W_{t_1}}{3n}
$$

Advanced

Problem 6. In the setting of the MWU, we have *n* experts, each making a binary prediction at each time step. Now, assume that we know that, for every $1 \leq k \leq n$, the *k*-th expert makes at most *k* mistakes.

- a) What bound can you show on $C(T)$ when running the MWU algorithm with parameter *β*?
- What bound can you show on **E**[*C*(*T*)] when running the Randomised MWU b) algorithm with parameter *β*?

Solution 6.

We can use an analysis very similar to that given in class for the MWU algo-a) rithm. On the one hand, if the algorithm makes *C* mistakes then after these mistakes the total weight *W* of all experts will be at most $n\left(\frac{1+\beta}{2}\right)$ 2 \int ^C. On the other hand, we now know that the *k*-th expert makes at most *k* mistakes, so the lower bound on the total weight we have is $W \ge \beta + \beta^2 + \cdots + \beta^n = \beta \cdot \frac{1-\beta^n}{1-\beta}$ $\frac{1-\rho}{1-\beta}$. Solving the inequality

$$
\beta \cdot \frac{1-\beta^n}{1-\beta} \le n \left(\frac{1+\beta}{2}\right)^C
$$

we obtain

$$
C(T) \le \frac{\log_2 \frac{1-\beta}{\beta(1-\beta^n)} + \log_2 n}{\log_2 \frac{2}{1+\beta}} = \frac{\ln \frac{1-\beta}{\beta(1-\beta^n)} + \ln n}{\ln \frac{2}{1+\beta}}
$$

as our bound on the number of mistakes.

The analysis is similar to that of the Randomized MWU algorithm from the b) lecture. Let *Fⁱ* denote the fraction of weight at the *i*-th trial on experts giving an incorrect advice, so that $C = \sum_{i=1}^{T} F_i$. On the one hand, we have that *W* (the final total weight of all experts) equals $n \prod_{i=1}^{T} (1 - (1 - \beta)F_i)$. On the other hand, we know that expert k has weight at least β^k , so here again $W \geq \beta +$ $\beta^2 + \cdots + \beta^n = \beta \cdot \frac{1-\beta^n}{1-\beta}$ 1−*β* . Putting these together as in the lecture,

$$
\mathbb{E}[C(T)] = \sum_{i=1}^{T} F_i \le \frac{\ln \frac{1-\beta}{\beta(1-\beta^n)} + \ln n}{1-\beta}.
$$