comMpx270 Solution 11: Learning and testing probability distributions $2 2024

Warm-up

Problem 1. Check your understanding: how does the Pearson-Neyman lemma
(Lemma 49.1) imply that Alice-Bob game interpretation?

Solution 1. The probability that Bob loses is

Pr[Bob loses| = Pr[Bob says Heads | Tails| - Pr|[Tails| + Pr[Bob says Tails | Heads] - Pr[Heads]

1 1

= xlirq[Bob says Heads] - 5T xlzrp [Bob says Tails] - 5
1 1

= (Type I error) - 5T (Type II error) - 5 (*)

_ Type I error + Type II error

B 2

> 1— dT;/(Pz q)

the last line by the Pearson-Neyman lemma, and (x) by seeing Bob as a distin-
guisher between p and q (i.e., a function Bob: X — {Heads, Tails} where Heads
corresponds to p and Tails to q).

Problem 2. Prove the upper bound of Corollary 50.1 directly, via Hoeffding.
Solution 2. Letting p := %2?:1 x; be the empirical estimator of p, we have that
E[p] = p and x1,...,x, € {0,1} are i.i.d. random variables with mean p. By
Hoeffding’s inequality (Corollary 12.1), for € € (0, 1], we habe

Pr[[p—p| > e] <2072

To have the RHS be at most ¢ € (0, 1], it suffices to have n > 21? In %, so for instance
n=[55In3] = O(}log}) suffices.

Problem 3. Show that ¢, and /., distances between distributions:

bLp,q) =llp—dal2= /) (p(x) —q(x))% Eoo(p,q)=||p—q||oo=rxréa);<lp(X)—q(x)|

xeX

do not satisfy the Data Processing Inequality.
Solution 3. Suppose k > 4 is even, and let p be the uniform distribution over

X ={1,2,...,k}, while q is uniform over {1,2,...,k/2} (and puts probability zero
on {k/2+1,...,k}). One can check that

b(p,q) = (g (% - %)2+
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Now, let f: X — X be defined as

)1 ifx<k/2
f(x)_{z if x> k/2

and p’ (resp. q') be the distribution of f(x) when x ~ p (resp. x ~ q). Then p’ is
uniform on {1,2} (and 0 elsewhere), while q' puts probability mass one (all of it)
on element 1: q/(1) = 1. It follows that

1/2

o, q) = (1) -d1)?+ (¢ - q@)) " = ((% 1)+ (4~ 0)2) e

showing that />(p’,q’) > ¢2(p,q). The same counter-example works for /o, as
EOO(PI CI) = %/ while Eoo(p/, q/) = %

Problem 4. Prove Scheffé’s lemma. (Hint: consider the set S = {x € X : p(x) >

q(x)}.)

Solution 4.

e Consider the suggested set S* := {x € X' : p(x) > q(x)}. For this set, we have

p(S*)—q(S*) =) p(x)— ) q(x)

xe5* xes*
= ZS*(p(X) —q(x))
= ZS) p(x) —q(x)] (s p(x) —q(x) >0 for x € §)
= ZS‘, p(x) — q(x)] ()

We also have that

Y. Ip(x) —q(x)[ = Y (q(x) —p(x)) (as p(x) —q(x) <O for x & 5*)

XES* XES*
=) qa(x) - ) p()
X¢S* X¢S*

= <1 - ZS*q(X)> - (1 - ZS)*P(JC))
(as yex P(¥) = Lyex q(x) =1)

=) p(x)— ), q(x)

xeS* xeS*
=) lp(x) —q(x)|
x€eS*

xeS* XES* x¢S*
1 1
=5 (Z Ip(x) — q(X)I) =5lp—all-
xeX
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Along with (1), this shows sups- 4 (p(S) — q(S)) > p(S*) — q(S*) = &|lp —
q/|l1- Overall, this establishes that

1
p(S") —a(5") = 5llp —all- 3

* We can use this to prove sups- 4 (p(S) — q(5)) = 2p —qll

Take any set T C X. We can write both T and S* as the union of 2 disjoint sets,
T=(T\S")U(TNS*)and S* = (S*\ T)U (T NS*). Note that by definition
of §*, and the fact that T\ §* C X'\ S¥,

P(T\S") <q(T\S%),  p(ST\T)=>q(5"\T)

(since the inequalities hold for each element x of these sets). This implies that

p(T) - q(T) = (p(T\ ")+ p(TNS") — (q(T\ §) + (TN S"))
= p(TNS") —q(TNS*) + (p(T\ ) ~q(T\ 5"))
<0
< p(TNS") —q(TNS")
< p(TNS*) — q(TNS") + (p(S*\ T) —q(5*\ T)

>0

(P(S"\T) +p(TNS")) = (q(S"\T) +q(TNSY))
=p(57) —q(s%).
Since p(T) — q(T) < p(S*) — q(S*) for every T C X, the inequality holds for

the supremum, showing

sup(p(S) —q(S)) < p(5") —q(S").
SCX

and so (since clearly supg- 1 (p(S) — q(S)) > p(S*) — q(S*), as the supremum
is an upper bound over all sets)

sup (p(S) — q(5)) = p(S7) —q(S%),
SCX

which combined with (1) proves Scheffé’s lemma.

Problem solving

Problem 5. Prove the two “suboptimal” sample complexities for learning distribu-
tions. For the second, explain how to get rid of the assumption on min; p; (possibly
losing some constant factors in the sample complexity).
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Solution 5. For both, we are analysing the usual empirical estimator, defined by
1& .
:%le]':i/ ZEX/

where X is a known discrete domain of size k. Note that, for any fixed i and any
1<j<nE[ly_]=Pr[xj=i] =p(i).

* The first one requires to choose 7 such that, for every i € X,

Pe|19(0) -~ p(0)] > ¢ | < ¢ )
since then, by a union bound, we get
Pr[Vi € X, 15(i) — p(i)| < %} >1-k-0=1-5,
and so, with probability at least 1 — 4,
drv(p,p) =5 X Ip(i) ~ ()| < 5 X = =e.
ZGX icX

So finding n such that (*) holds is sufficient to learn to TV distance ¢ with
probability 1 — . How big n must be for (x)? From the same analysis as
learning the bias of a coin (Corollary 50.1), i.e., by a Hoeffding bound (or
directly using that result, since for fixed i we are estimating the bias p(i) of a
“coin” from n samples), we need

=0 (w8 577) = 0 (kZ o) |

* The second one requires to choose 7 such that, for every i € &,

. ) , )
Pr[[p(i) —p()[ > 2¢-p(i)] = ¢ (%)
since then, by a union bound, we get
Pr[Vi € X, [B(i) — p(i)| < 2¢-p(i)] > 1—1«%: -4,

and so, with probability at least 1 — 4,
drv Z lp(i) ()] < = 2 2¢ -
16)( zEX

using Y;cy p(i) = 1. So finding n such that (xx) holds is sufficient to learn to
TV distance ¢ with probability 1 — . How big n must be for (x*)? Without

any further assumption, we cannot get any bound on this. If p(1) = 1/ 222 ,

4
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then we cannot get a multiplicative estimate of it (which () asks for) unless

k
we take n = ()(222 ) samples: before that, with overwheliming probability we
wouldn’t see “1” even once in our samples, and so p(1) = 0.

This is why we make the assumption that min;cy p(i) > T = § (why this
particular value for 7? Essentially, as we will see it’s because that’s a value we
can guarantee via a simple “trick”, and we cannot guarantee anything better).

For convenience, and also “without loss of generality” we will also assume
e < 1/2: if it is bigger, say 0.99 learn to distance 1/2 instead, this gives a
better guarantee and loses only a constant factor in the sample complexity.
Then, by a Chernoff bound (Theorem 13), for any fixed i we have

Pr[[(i) — p(i)] > 2¢- p(i)] < 2e~4P() < geien

and so, for this to be at most %, we need

1 2k k 2k
> In= = X nZ
n_4€2Tn(5 4e3n5

andso|n =0 (% In E) suffices.
3 0

* Removing that assumption (up to a constant factor somewhere). The issue with this
assumption is that it is not true that all probability distributions have some
probability at least T > 0 on each domain element. What we can do, however,
is “mix” the unknown distribution p with the uniform distribution uy: define
p’ as

pPP=(1-a)pta u
the distribution obtained by the following process:

: Flip a coin with bias a.

: If it landed Heads, draw x ~ uy
: Else, draw x ~ p

return x

S QN R

We can easily get n i.i.d. samples from p’ given n ii.d. samples from p (we
most likely not even use them all), as long as we also have our own random-
ness (to flip the coin and, sometimes, sample from uy). We also have

drv(p,p') < w

since

S LI~ p()] = 5 X alui(x) —p(x)] = a-drv(p,w) <a
xekX xeX

And by the triangle inequality, if we learn p’ to some distance parameter ¢’
(and get p) then

dryv(p,p) < drv(p,p’) +drv(p’,p) < a+¢€

5
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If we want this to be at most ¢, then we can choose for instance

and then learning p’ with n samples to distance § implies learning p to distance &
with n samples, and the same probability of success.

But why did we do all this? Well, now, for every i,

p'(i) = (1—a) p(i)+a ui) > a- i) =

N m
==

and so we satisfy the assumption with 7 = .

Problem 6. Instead of looking at all (5) possible pairs of samples in Algorithm 21 for
uniformity testing, describe and analyse the tester which partitions the n samples
into 5 (independent) pairs of samples, and use them to estimate Pr[ X = Y]. What
is the resulting sample complexity?

Solution 6. The algorithm is as follows: given 7 i.i.d. samples from p (1 is assumed
even without loss of generality), get n/2 disjoint pairs of the form (xp;_1, xp;) for
1 <i<n/2,and for set

Vi= 1y, =y

We have that yq,...,v,/, are i.i.d. Bernoulli (coin tosses) with
Ely;] = Pr[xi1 = x2i] = |[pll3-

We want to distinguish between ||p[|3 = } and ||p||3 > # (see discussion just after
Remark 55.1), say with constant failure probability 6 = 1/3, which by Theorem 52

will lead to ) . L
n
2= ° ((1/k> ()2 1°g5) -© <‘4)

which is even worse than what we would need to learn the distribution! What went
wrong? Instead of looking at all possible things which could give us a collision
(all () = ©(n?) pairs of samples), we ended up only looking at n/2 pairs. It is
much simpler to analyse, but we lost a quadratic factor in n by doing so, which is
intuitively why we end up with k/e* instead of vk /2.

Problem 7. This is a programming exercise, to be done in, e.g., a Jupyter notebook.

a) Write a function which, given two probability distributions represented as two
arrays of the same size, computes their total variation distance.

b) Implement the empirical estimator seen in class: given the domain size k
and a multiset of n numbers in {1,2,...,k}, return the empirical probability
distribution over {1,2,...,k}.

c) Implement the uniformity testing algorithm (Algorithm 21).

d) Import the Canada’s 6/49 lotto dataset (from https://www.kaggle.com/datasets/
datascienceai/lottery-dataset, available on Ed).

6
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e) Learn the distribution of the first number, from the n = 3,665 samples. Plot
the result.

f) Test whether the distribution of the “bonus number” is uniform, from the
n = 3,665 samples, for ¢ € {0.05,0.1,0.2,0.3,0.4,0.5}. Report the results.

g) Learn the distribution of the “bonus number”, from the n = 3,665 samples,
and compute the total variation distance between the resulting p and the uni-
form distribution on {1,2,...,49}.

Advanced

Problem 8. Consider the following alternative approach to learn a probability dis-
tribution over a domain X" of size k:

1. Take n ii.d. samples from p

2. Compute, for every domain element i € &X', the number n; of times it appears
among the n samples.

3. For everyi € X, let
p(i) — ]
P = vk

4. return p

(This is called the Laplace estimator. Note that, in contrast to the empirical estimator,
it assigns non-zero probability to every element of the domain, even those that do
not appear in the samples.)

a) Show that p is a probability distribution.

b) Define the chi-squared divergence between probability distributions as

2 _ v (p(x) —q(x))
X (plla) = ;{ )

(Note that this is not symmetric, and not bounded!) Show that dtv(p, q)? <
1x*(p[lq) for every p, q.

c) Show that E[x*(pllp)] < 1’;%&

d) Conclude on the value of n sufficient to learn p to total variation distance ¢
using the Laplace estimator.

Solution 8.
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a) Since p is non-negative, it suffices that it sums to 1:

Zﬁ(l): Z Tli+1 _ ZieX(ni+1) — n+k —
iex icv ntk n+k n+k

since |X| =k and Y ;cy n; = n.

b) By Cauchy-Schwarz,

drv(p,q Z p(x
xeX
E Z (x))z Z q(x)
xeX xeX

= %\/XZ(PHq)-

c) First, we can expand the x? divergence to get

2

> p(x)” —2p(x)q(x) +q(x _y p(x)

Clella) =), ax) Loam -

after simplifying and summing, using that }_,cy p(x) = Y,cx q(x) =1
While n4, ..., ny are not independent, we can still use linearity of expectation:

E[x*(p|Ip)] 1+ZIE{ 1 —14+ Y p(x)*(n+k)E { L 1

xeX xeX ny+1

Since n, ~ Bin(n, p(x)), a “simple calculation” involving manipulating Bino-
mial coefficients shows that

E |:nx1—|—1} = i <2’) P(x)€(1£jrpl(x))n—e

=0

g 1 (17t
n+1 n
= s L (e - ety
_1-(1-p@)"!
p(x)(n+1)
1

= P+ 1)
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and so

N n+k
E[x*(plp)] < -1 +x;( P(x)zm

n-+k
=1
+n—|—1
k—1
Con+1

d) By b), to learn to TV ¢ it is enough to learn to x? divergence 4¢>. By c), to learn
to expected x> divergence O(e?) it is enough to have n = O(k/¢?). Combining
this with Markov’s inequality, to learn to TV ¢ with probability at least 9/10
it is enough to have expected x* divergence 4¢?/10, and so it is enough to have

10k
n> 12
In more detail, here are two possible approaches (the second giving a slightly
worse bound). The first:

Pr(dry(p,p) > €] = Prldrv(p, p)* > €]

AN2
< w (Markov)

E[3x*(pllp)]
< 48—2tagbyb)

-1

z] (by <)
ko

ne?

=

=
)|

W

<

B

and for this to be at most 1/10, we set n > %.

Another (slightly worse!) option uses Jensen’s inequality in the middle to
handle the square root, instead of getting rid of it before Markov’s inequality):

Peldry(p,p) > ¢] < LTV PP (Markov)

E[3v/x*(plp)]
3VER2(plP)]

<

< - (Jensen’s inequality)
k=1
_ n+1
42
k
< 4]t
=V 4ne?
and for this to be at most 1/10, we set n > % = i—?
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