
compx270 Solution 11: Learning and testing probability distributions s2 2024

Warm-up

Problem 1. Check your understanding: how does the Pearson–Neyman lemma
(Lemma 49.1) imply that Alice-Bob game interpretation?

Solution 1. The probability that Bob loses is

Pr[Bob loses] = Pr[Bob says Heads | Tails] · Pr[Tails] + Pr[Bob says Tails | Heads] · Pr[Heads]

= Pr
x∼q

[Bob says Heads] · 1
2
+ Pr

x∼p
[Bob says Tails] · 1

2

= (Type I error) · 1
2
+ (Type II error) · 1

2
(⋆)

=
Type I error + Type II error

2

≥ 1 − dTV(p, q)
2

the last line by the Pearson–Neyman lemma, and (⋆) by seeing Bob as a distin-
guisher between p and q (i.e., a function Bob : X → {Heads,Tails} where Heads
corresponds to p and Tails to q).

Problem 2. Prove the upper bound of Corollary 50.1 directly, via Hoeffding.

Solution 2. Letting p̂ := 1
n ∑n

i=1 xi be the empirical estimator of p, we have that
E[ p̂] = p and x1, . . . , xn ∈ {0, 1} are i.i.d. random variables with mean p. By
Hoeffding’s inequality (Corollary 12.1), for ε ∈ (0, 1], we habe

Pr[ | p̂ − p| > ε ] ≤ 2e−2ε2n

To have the RHS be at most δ ∈ (0, 1], it suffices to have n ≥ 1
2ε2 ln 2

δ , so for instance
n =

⌈ 1
2ε2 ln 2

δ

⌉
= O( 1

ε2 log 1
δ ) suffices.

Problem 3. Show that ℓ2 and ℓ∞ distances between distributions:

ℓ2(p, q) = ∥p−q∥2 =
√

∑
x∈X

(p(x)− q(x))2, ℓ∞(p, q) = ∥p−q∥∞ = max
x∈X

|p(x)−q(x)|

do not satisfy the Data Processing Inequality.

Solution 3. Suppose k ≥ 4 is even, and let p be the uniform distribution over
X = {1, 2, . . . , k}, while q is uniform over {1, 2, . . . , k/2} (and puts probability zero
on {k/2 + 1, . . . , k}). One can check that

ℓ2(p, q) =

(
k
2
·
(

2
k
− 1

k

)2

+
k
2
·
(

0 − 1
k

)2
)1/2

=
1√
k

1
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Now, let f : X → X be defined as

f (x) =

{
1 if x ≤ k/2
2 if x > k/2

and p′ (resp. q′) be the distribution of f (x) when x ∼ p (resp. x ∼ q). Then p′ is
uniform on {1, 2} (and 0 elsewhere), while q′ puts probability mass one (all of it)
on element 1: q′(1) = 1. It follows that

ℓ2(p′, q′) =
(
(p′(1)− q′(1))2 + (p′(2)− q′(2))2

)1/2
=

((
1
2 − 1

)2
+
(

1
2 − 0

)2
)1/2

= 1√
2

showing that ℓ2(p′, q′) > ℓ2(p, q). The same counter-example works for ℓ∞, as
ℓ∞(p, q) = 1

k , while ℓ∞(p′, q′) = 1
2 .

Problem 4. Prove Scheffé’s lemma. (Hint: consider the set S = {x ∈ X : p(x) >
q(x)}.)

Solution 4.

• Consider the suggested set S∗ := {x ∈ X : p(x) > q(x)}. For this set, we have

p(S∗)− q(S∗) = ∑
x∈S∗

p(x)− ∑
x∈S∗

q(x)

= ∑
x∈S∗

(p(x)− q(x))

= ∑
x∈S∗

|p(x)− q(x)| (as p(x)− q(x) > 0 for x ∈ S∗)

= ∑
x∈S∗

|p(x)− q(x)| (†)

We also have that

∑
x/∈S∗

|p(x)− q(x)| = ∑
x/∈S∗

(q(x)− p(x)) (as p(x)− q(x) ≤ 0 for x /∈ S∗)

= ∑
x/∈S∗

q(x)− ∑
x/∈S∗

p(x))

=

(
1 − ∑

x∈S∗
q(x)

)
−
(

1 − ∑
x∈S∗

p(x)

)
(as ∑x∈X p(x) = ∑x∈X q(x) = 1)

= ∑
x∈S∗

p(x)− ∑
x∈S∗

q(x)

= ∑
x∈S∗

|p(x)− q(x)|

and so

∑
x∈S∗

|p(x)− q(x)| = 1
2

(
∑

x∈S∗
|p(x)− q(x)|+ ∑

x/∈S∗
|p(x)− q(x)|

)

=
1
2

(
∑

x∈X
|p(x)− q(x)|

)
=

1
2
∥p − q∥1 .

2
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Along with (†), this shows supS⊆X (p(S)− q(S)) ≥ p(S∗)− q(S∗) = 1
2∥p −

q∥1. Overall, this establishes that

p(S∗)− q(S∗) =
1
2
∥p − q∥1 . (‡)

• We can use this to prove supS⊆X (p(S)− q(S)) = 1
2∥p − q∥1:

Take any set T ⊆ X . We can write both T and S∗ as the union of 2 disjoint sets,
T = (T \ S∗) ∪ (T ∩ S∗) and S∗ = (S∗ \ T) ∪ (T ∩ S∗). Note that by definition
of S∗, and the fact that T \ S∗ ⊆ X \ S∗,

p(T \ S∗) ≤ q(T \ S∗), p(S∗ \ T) ≥ q(S∗ \ T)

(since the inequalities hold for each element x of these sets). This implies that

p(T)− q(T) = (p(T \ S∗) + p(T ∩ S∗))− (q(T \ S∗) + q(T ∩ S∗))

= p(T ∩ S∗)− q(T ∩ S∗) + (p(T \ S∗)− q(T \ S∗))

≤0

≤ p(T ∩ S∗)− q(T ∩ S∗)

≤ p(T ∩ S∗)− q(T ∩ S∗) + (p(S∗ \ T)− q(S∗ \ T))
≥0

= (p(S∗ \ T) + p(T ∩ S∗))− (q(S∗ \ T) + q(T ∩ S∗))

= p(S∗)− q(S∗) .

Since p(T)− q(T) ≤ p(S∗)− q(S∗) for every T ⊆ X , the inequality holds for
the supremum, showing

sup
S⊆X

(p(S)− q(S)) ≤ p(S∗)− q(S∗) .

and so (since clearly supS⊆X (p(S)− q(S)) ≥ p(S∗)− q(S∗), as the supremum
is an upper bound over all sets)

sup
S⊆X

(p(S)− q(S)) = p(S∗)− q(S∗),

which combined with (‡) proves Scheffé’s lemma.

Problem solving

Problem 5. Prove the two “suboptimal” sample complexities for learning distribu-
tions. For the second, explain how to get rid of the assumption on mini pi (possibly
losing some constant factors in the sample complexity).
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Solution 5. For both, we are analysing the usual empirical estimator, defined by

p̂(i) =
1
n

n

∑
j=1

1xj=i, i ∈ X ,

where X is a known discrete domain of size k. Note that, for any fixed i and any
1 ≤ j ≤ n, E[1xj=i] = Pr

[
xj = i

]
= p(i).

• The first one requires to choose n such that, for every i ∈ X ,

Pr
[
|p̂(i)− p(i)| > 2ε

k

]
≤ δ

k
(∗)

since then, by a union bound, we get

Pr
[
∀i ∈ X , |p̂(i)− p(i)| ≤ 2ε

k

]
≥ 1 − k · δ

k
= 1 − δ ,

and so, with probability at least 1 − δ,

dTV(p, p̂) =
1
2 ∑

i∈X
|p(i)− p̂(i)| ≤ 1

2 ∑
i∈X

2ε

k
= ε .

So finding n such that (∗) holds is sufficient to learn to TV distance ε with
probability 1 − δ. How big n must be for (∗)? From the same analysis as
learning the bias of a coin (Corollary 50.1), i.e., by a Hoeffding bound (or
directly using that result, since for fixed i we are estimating the bias p(i) of a
“coin” from n samples), we need

n = O
(

1
(ε/k)2 log

1
(δ/k)

)
= O

(
k2

ε2 log
k
δ

)
.

• The second one requires to choose n such that, for every i ∈ X ,

Pr[ |p̂(i)− p(i)| > 2ε · p(i) ] ≤ δ

k
(∗∗)

since then, by a union bound, we get

Pr[ ∀i ∈ X , |p̂(i)− p(i)| ≤ 2ε · p(i) ] ≥ 1 − k · δ

k
= 1 − δ ,

and so, with probability at least 1 − δ,

dTV(p, p̂) =
1
2 ∑

i∈X
|p(i)− p̂(i)| ≤ 1

2 ∑
i∈X

2ε · p(i) = ε ,

using ∑i∈X p(i) = 1. So finding n such that (∗∗) holds is sufficient to learn to
TV distance ε with probability 1 − δ. How big n must be for (∗∗)? Without

any further assumption, we cannot get any bound on this. If p(1) = 1/222k
,

4



compx270 Solution 11: Learning and testing probability distributions s2 2024

then we cannot get a multiplicative estimate of it (which (∗∗) asks for) unless

we take n = Ω(222k
) samples: before that, with overwheliming probability we

wouldn’t see “1” even once in our samples, and so p̂(1) = 0.

This is why we make the assumption that mini∈X p(i) ≥ τ = ε
k (why this

particular value for τ? Essentially, as we will see it’s because that’s a value we
can guarantee via a simple “trick”, and we cannot guarantee anything better).

For convenience, and also “without loss of generality” we will also assume
ε ≤ 1/2: if it is bigger, say 0.99 learn to distance 1/2 instead, this gives a
better guarantee and loses only a constant factor in the sample complexity.
Then, by a Chernoff bound (Theorem 13), for any fixed i we have

Pr[ |p̂(i)− p(i)| > 2ε · p(i) ] ≤ 2e−4ε2np(i) ≤ 2e−4ε2nτ

and so, for this to be at most δ
k , we need

n ≥ 1
4ε2τ

ln
2k
δ

=
k

4ε3 ln
2k
δ

and so n = O
(

k
ε3 ln

k
δ

)
suffices.

• Removing that assumption (up to a constant factor somewhere). The issue with this
assumption is that it is not true that all probability distributions have some
probability at least τ > 0 on each domain element. What we can do, however,
is “mix” the unknown distribution p with the uniform distribution uk: define
p′ as

p′ = (1 − α) · p + α · uk

the distribution obtained by the following process:

1: Flip a coin with bias α.
2: If it landed Heads, draw x ∼ uk
3: Else, draw x ∼ p
4: return x

We can easily get n i.i.d. samples from p′ given n i.i.d. samples from p (we
most likely not even use them all), as long as we also have our own random-
ness (to flip the coin and, sometimes, sample from uk). We also have

dTV(p, p′) ≤ α

since

1
2 ∑

x∈X
|p′(x)− p(x)| = 1

2 ∑
x∈X

α|uk(x)− p(x)| = α · dTV(p, uk) ≤ α .

And by the triangle inequality, if we learn p′ to some distance parameter ε′

(and get p̂) then

dTV(p, p̂) ≤ dTV(p, p′) + dTV(p′, p̂) ≤ α + ε′

5
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If we want this to be at most ε, then we can choose for instance

α = ε′ =
ε

2

and then learning p′ with n samples to distance ε
2 implies learning p to distance ε

with n samples, and the same probability of success.

But why did we do all this? Well, now, for every i,

p′(i) = (1 − α) · p(i) + α · uk(i) ≥ α · uk(i) =
ε

2
· 1

k

and so we satisfy the assumption with τ = ε
2k .

Problem 6. Instead of looking at all (n
2) possible pairs of samples in Algorithm 21 for

uniformity testing, describe and analyse the tester which partitions the n samples
into n

2 (independent) pairs of samples, and use them to estimate Pr[ X = Y ]. What
is the resulting sample complexity?

Solution 6. The algorithm is as follows: given n i.i.d. samples from p (n is assumed
even without loss of generality), get n/2 disjoint pairs of the form (x2i−1, x2i) for
1 ≤ i ≤ n/2, and for set

yi := 1x2i−1=x2i

We have that y1, . . . , yn/2 are i.i.d. Bernoulli (coin tosses) with

E[yi] = Pr[ x2i−1 = x2i ] = ∥p∥2
2 .

We want to distinguish between ∥p∥2
2 = 1

k and ∥p∥2
2 > 1+4ε2

k (see discussion just after
Remark 55.1), say with constant failure probability δ = 1/3, which by Theorem 52

will lead to
n
2
= O

(
1

(1/k) · (ε2)2 log
1
δ

)
= O

(
k
ε4

)
which is even worse than what we would need to learn the distribution! What went
wrong? Instead of looking at all possible things which could give us a collision
(all (n

2) = Θ(n2) pairs of samples), we ended up only looking at n/2 pairs. It is
much simpler to analyse, but we lost a quadratic factor in n by doing so, which is
intuitively why we end up with k/ε4 instead of

√
k/ε2.

Problem 7. This is a programming exercise, to be done in, e.g., a Jupyter notebook.

Write a function which, given two probability distributions represented as two
arrays of the same size, computes their total variation distance.

a)

Implement the empirical estimator seen in class: given the domain size k
and a multiset of n numbers in {1, 2, . . . , k}, return the empirical probability
distribution over {1, 2, . . . , k}.

b)

Implement the uniformity testing algorithm (Algorithm 21).c)

Import the Canada’s 6/49 lotto dataset (from https://www.kaggle.com/datasets/

datascienceai/lottery-dataset, available on Ed).
d)
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Learn the distribution of the first number, from the n = 3, 665 samples. Plot
the result.

e)

Test whether the distribution of the “bonus number” is uniform, from the
n = 3, 665 samples, for ε ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. Report the results.

f)

Learn the distribution of the “bonus number”, from the n = 3, 665 samples,
and compute the total variation distance between the resulting p̂ and the uni-
form distribution on {1, 2, . . . , 49}.

g)

Advanced

Problem 8. Consider the following alternative approach to learn a probability dis-
tribution over a domain X of size k:

1. Take n i.i.d. samples from p

2. Compute, for every domain element i ∈ X , the number ni of times it appears
among the n samples.

3. For every i ∈ X , let

p̂(i) =
ni + 1
n + k

4. return p̂

(This is called the Laplace estimator. Note that, in contrast to the empirical estimator,
it assigns non-zero probability to every element of the domain, even those that do
not appear in the samples.)

Show that p̂ is a probability distribution.a)

Define the chi-squared divergence between probability distributions as

χ2(p∥q) = ∑
x∈X

(p(x)− q(x))2

q(x)

(Note that this is not symmetric, and not bounded!) Show that dTV(p, q)2 ≤
1
4 χ2(p∥q) for every p, q.

b)

Show that E[χ2(p∥p̂)] ≤ k−1
n+1 .c)

Conclude on the value of n sufficient to learn p to total variation distance ε
using the Laplace estimator.

d)

Solution 8.

7
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Since p̂ is non-negative, it suffices that it sums to 1:

∑
i∈X

p̂(i) = ∑
i∈X

ni + 1
n + k

=
∑i∈X (ni + 1)

n + k
=

n + k
n + k

= 1

since |X | = k and ∑i∈X ni = n.

a)

By Cauchy–Schwarz,

dTV(p, q) =
1
2 ∑

x∈X
|p(x)− q(x)|

≤ 1
2

√
∑

x∈X

(p(x)− q(x))2

q(x)

√
∑

x∈X
q(x)

=
1
2

√
χ2(p∥q) .

b)

First, we can expand the χ2 divergence to get

χ2(p∥q) = ∑
x∈X

p(x)2 − 2p(x)q(x) + q(x)2

q(x)
= ∑

x∈X

p(x)2

q(x)
− 1

after simplifying and summing, using that ∑x∈X p(x) = ∑x∈X q(x) = 1.
While n1, . . . , nk are not independent, we can still use linearity of expectation:

E[χ2(p∥p̂)] = −1 + ∑
x∈X

E

[
p(x)2

p̂

]
= −1 + ∑

x∈X
p(x)2(n + k)E

[
1

nx + 1

]
Since nx ∼ Bin(n, p(x)), a “simple calculation” involving manipulating Bino-
mial coefficients shows that

E

[
1

nx + 1

]
=

n

∑
ℓ=0

(
n
ℓ

)
p(x)ℓ(1 − p(x))n−ℓ

ℓ+ 1

=
1

p(x)(n + 1)

n

∑
ℓ=0

(
n + 1
ℓ+ 1

)
p(x)ℓ+1(1 − p(x))n+1−(ℓ+1)

=
1

p(x)(n + 1)

n+1

∑
m=1

(
n + 1

m

)
p(x)m(1 − p(x))n+1−m

=
1 − (1 − p(x))n+1

p(x)(n + 1)

≤ 1
p(x)(n + 1)

c)

8
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and so

E[χ2(p∥p̂)] ≤ −1 + ∑
x∈X

p(x)2 n + k
p(x)(n + 1)

= −1 +
n + k
n + 1

=
k − 1
n + 1

By b), to learn to TV ε it is enough to learn to χ2 divergence 4ε2. By c), to learn
to expected χ2 divergence O(ε2) it is enough to have n = O(k/ε2). Combining
this with Markov’s inequality, to learn to TV ε with probability at least 9/10
it is enough to have expected χ2 divergence 4ε2/10, and so it is enough to have

n ≥ 10k
4ε2 .

In more detail, here are two possible approaches (the second giving a slightly
worse bound). The first:

Pr[dTV(p, p̂) > ε] = Pr[dTV(p, p̂)2 > ε2]

≤ E[dTV(p, p̂)2]

ε2 (Markov)

≤
E[1

4 χ2(p∥p̂)]
ε2 tagbyb)

=
k−1
n+1
4ε2 (by c))

≤ k
4nε2

and for this to be at most 1/10, we set n ≥ 10
4ε2 .

Another (slightly worse!) option uses Jensen’s inequality in the middle to
handle the square root, instead of getting rid of it before Markov’s inequality):

Pr[dTV(p, p̂) > ε] ≤ E[dTV(p, p̂)]
ε

(Markov)

≤
E[1

2

√
χ2(p∥p̂)]
ε

≤
1
2

√
E[χ2(p∥p̂)]

ε
(Jensen’s inequality)

=

√
k−1
n+1
4ε2

≤
√

k
4nε2

and for this to be at most 1/10, we set n ≥ 100
4ε2 = 25

ε2 .

d)
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