Warm-up

Problem 1. Check your understanding: recall their definitions, and summarise the key differences between an LP and an ILP.

Problem 2. Formulate MAX-CUT as an ILP.

- a) Give its LP relaxation, and suggest a randomised rounding strategy.
- b) Show that $y^* = (1, 1, ..., 1)$ and $x^* = (1/2, 1/2, ..., 1/2)$ is always an optimal solution to the LP relaxation.
- c) What does your rounding scheme become in this case?

Problem 3. Describe how to derandomise the 3/4-approximation algorithm for Max-SAT given in class.

Problem solving

Problem 4. Consider the KNAPSACK problem, where the goal is to select a subset of *n* items that fit in the knapsack (which can only store total weight *W*) in order to maximise total value, where item *i* has value $v_i \geq 0$ and weight $w_i > 0$.

- a) Give the corresponding ILP.
- b) Provide the LP relaxation, which corresponds to the *Fractional* Knapsack.
- c) Solve the LP relaxation (using, e.g., Matlab with the function linprog) on the following set of 10 items, with weight limit $W = 20$: $(v_i, w_i) = (i^2, i)$, $1 \le i \le n$ 10. See how this changes as you vary *W* from 20 to 55.
- Compare to the solution obtained by the Greedy algorithm for Fractional d) Knapsack.
- e) Compare to the optimal solution of the ILP (for $W = 20$, then varying W as before), also obtained by solving the ILP (on Matlab, with the function intlinprog).

Problem 5. Suppose the instance of Max-SAT has no negated "unit clause" (that is, either a clause have length at least 2, or it is a non-negated variable *xⁱ*). Instead of setting each variable to 1 independently with probability 1/2in the "obvious" randomised algorithm, do the analysis when this is done with some (fixed) probability $p > 1/2$.

- a) Show that this gives (in expectation) a $min(p, 1 p^2)$ -approximation.
- b) Optimise the choice of *p* to obtain the best approximation possible.
- c) (\star) Show how to remove the "no negated unit clause" assumption: let $S \subseteq [n]$ be the set of variables such that both the unit clause $\neg x_i$ *and* the unit clause *x_i* exist in the instance ϕ , and $T \subset [n]$ be the set of variables for which only the unit clause $\neg x_i$ is in ϕ . Then consider the randomised rounding scheme with sets each variable *i* independently to 1 with probability p if $i \notin T$, and with probability *p* (as before) otherwise, where *p* is the value found in the previous subquestion. Show that $opt(\phi) \leq m - |S|$. Use this to conclude that $\mathbb{E}[\text{value}(\phi)] \geq p \cdot \text{opt}(\phi).$
- d) Compare this with the 1 1/*e* approximation guarantee obtained by LP rounding in the lecture.

Problem 6. Show that one can also obtain (directly) an expected $\frac{3}{4}$ -approximation to Max-SAT by using only randomised rounding: in Algorithm 20, instead of having x_i ∼ Bern(y_i^* i ^{*}) (independently), we will set set them independently to 1 with probability

$$
p_i := f(y_i^*),
$$

where $f: [0,1] \rightarrow [0,1]$ is any function such that $1 - \frac{1}{4^x} \le f(x) \le \frac{1}{4^{1-x}}$.

pi

- a) Draw the plot of both upper and lower bounds on f , to see what the conditions look like (and that such functions *f* do exist).
- b) In what follows, we fix any such function f . With the notation of Theorem 48 , show that, for any $1 \leq j \leq m$,

$$
\Pr\big[\,C_j\text{ not satisfied}\,\big]\leq \frac{1}{4^{z_j^*}}
$$

c) Deduce that, for any $1 \le j \le m$,

$$
Pr[C_j \text{ satisfied}] \geq \frac{3}{4}z_j^*
$$

Hint: use concavity.

d) Conclude.

Advanced

Problem 7. Show that one can also obtain (directly) an expected $\frac{3}{4}$ -approximation to Max-SAT by using only randomised rounding with a *linear* function of *y* ∗ i^* : in Algorithm 20, instead of having $x_i \sim \text{Bern } y_i^*$ $_{i}^{\ast}$ (independently), set them independently to 1 with probability

$$
p_i:=\frac{y_i^*}{2}+\frac{1}{4}.
$$