compx2yo Tutorial 10: Linear Programming and Randomised Rounding  s2 2024

Warm-up

Problem 1. Check your understanding: recall their definitions, and summarise the
key differences between an LP and an ILP.

Problem 2. Formulate Max-CuT as an ILP.

a) Give its LP relaxation, and suggest a randomised rounding strategy.

b) Show that y* = (1,1,...,1) and x* = (1/2,1/2,...,1/2) is always an optimal
solution to the LP relaxation.

¢) What does your rounding scheme become in this case?

Problem 3. Describe how to derandomise the 3/4-approximation algorithm for
Max-SAT given in class.

Problem solving

Problem 4. Consider the KNAPsAck problem, where the goal is to select a subset of
n items that fit in the knapsack (which can only store total weight W) in order to
maximise total value, where item i has value v; > 0 and weight w; > 0.

a) Give the corresponding ILP.
b) Provide the LP relaxation, which corresponds to the Fractional Knapsack.

¢) Solve the LP relaxation (using, e.g., Matlab with the function linprog) on the
following set of 10 items, with weight limit W = 20: (v;, w;) = (i%,i), 1 <i <
10. See how this changes as you vary W from 20 to 55.

d) Compare to the solution obtained by the Greedy algorithm for Fractional
Knapsack.

e) Compare to the optimal solution of the ILP (for W = 20, then varying W
as before), also obtained by solving the ILP (on Matlab, with the function
intlinprog).

Problem 5. Suppose the instance of MAx-SAT has no negated “unit clause” (that is,
either a clause have length at least 2, or it is a non-negated variable x;). Instead of
setting each variable to 1 independently with probability 1/2in the “obvious” ran-
domised algorithm, do the analysis when this is done with some (fixed) probability
p>1/2.

a) Show that this gives (in expectation) a min(p, 1 — p?)-approximation.

b) Optimise the choice of p to obtain the best approximation possible.
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¢) (%) Show how to remove the “no negated unit clause” assumption: let S C [n]
be the set of variables such that both the unit clause —x; and the unit clause
x; exist in the instance ¢, and T C [n] be the set of variables for which only
the unit clause —x; is in ¢. Then consider the randomised rounding scheme
with sets each variable i independently to 1 with probability p if i ¢ T, and
with probability p (as before) otherwise, where p is the value found in the
previous subquestion. Show that opt(¢) < m — |S|. Use this to conclude that

E[value(¢)] > p - opt(¢).
d) Compare this with the 1 —1/e approximation guarantee obtained by LP round-
ing in the lecture.

Problem 6. Show that one can also obtain (directly) an expected %-approximation
to Max-SAT by using only randomised rounding: in Algorithm 20, instead of hav-
ing x; ~ Bern(y}) (independently), we will set set them independently to 1 with

probability
pi = fyi),

where f: [0,1] — [0,1] is any function such that 1 — - < f(x) < 411_x.

a) Draw the plot of both upper and lower bounds on f, to see what the conditions
look like (and that such functions f do exist).

b) In what follows, we fix any such function f. With the notation of Theorem 48,
show that, forany 1 <j <m,

1

Pr| C; not satisfied | < .
4%

c) Deduce that, for any 1 <;j < m,
_ 3
Pr| C; satisfied | > 17

Hint: use concavity.
d) Conclude.

Advanced

Problem 7. Show that one can also obtain (directly) an expected 3-approximation
to Max-SAT by using only randomised rounding with a linear function of y;: in Al-
gorithm 20, instead of having x; ~ Berny; (independently), set them independently
to 1 with probability
vl
pi=5 g
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