
compx270 Solution 10: Linear Programming and Randomised Rounding s2 2024

Warm-up

Problem 1. Check your understanding: recall their definitions, and summarise the
key differences between an LP and an ILP.

Solution 1.

LP: optimize a linear function subject to linear constraints on a continuous domain.
Linear programming is P-complete, meaning that (the optimisation version of)
every decision problem that can be solved in polynomial time can be formu-
lated as an LP. There exist efficient algorithms to solve LP problems.

ILP: ILP has the extra constraints that some of its variables have to be an integer.
More general and allows to formulate more problems than LPs, but hard to
solve in general.

Problem 2. Formulate Max-Cut as an ILP.

Give its LP relaxation, and suggest a randomised rounding strategy.a)

Show that y∗ = (1, 1, . . . , 1) and x∗ = (1/2, 1/2, . . . , 1/2) is always an optimal
solution to the LP relaxation.

b)

What does your rounding scheme become in this case?c)

Solution 2. An ILP is given below:

maximize: ∑
e∈E

weye

subject to:
ye ≤ xu + xv ∀e = (u, v) ∈ E
ye ≤ 2 − (xu + xv) ∀e = (u, v) ∈ E
xv ∈ {0, 1} ∀v ∈ V
ye ∈ {0, 1} ∀e ∈ E

The LP relaxation is straightforward. Now, setting v ∈ S with probability xv inde-
pendently for each v ∈ V means that an edge e = (u, v) ∈ E is part of the cut with
probability xu(1 − xv) + xv(1 − xu) = xu + xv − 2xuxv.

But for the optimal solution x∗ = (1/2, 1/2, . . . , 1/2) (which might be the thing
that solving the LP returns: we cannot promise it would return another optimal so-
lution), this just means choosing to put each vertex in S independently with proba-
bility 1/2, and the expected value of the cut is simply 1

2 ∑e∈E we. This is the simple
randomised algorithm we saw a while back, and going through ILP and LP relax-
ation brings us nothing!

1

compx270 Solution 10: Linear Programming and Randomised Rounding s2 2024

Problem 3. Describe how to derandomise the 3/4-approximation algorithm for
Max-SAT given in class.

Solution 3. We will use the method of conditional expectations. Since it is a “best-
of-two” algorithm, it suffices to show that both randomised algorithm can be de-
randomised.

For Theorem 47, we can show that going through x1, . . . , xn and choosing the
realization that maximises expectation gives 1

2 -approximation through the below
inequality and applying it iteratively:

max{E[Valueϕ(x1, . . . , xn) | x1 = 0], E[Valueϕ(x1, . . . , xn) | x1 = 1]}
⩾ E[Valueϕ(x1, . . . , xn)]

=
1
2
· E[Valueϕ(x1, . . . , xn)|x1 = 0] +

1
2
· E[Valueϕ(x1, . . . , xn)|x1 = 1].

(And evaluating the expectation is straightforward in polynomial time.)
Similarly, one can show the same for Theorem 48,

max{E[Valueϕ(x1, . . . , xn)|x1 = 0], E[Valueϕ(x1, . . . , xn)|x1 = 1]}
⩾ E[Valueϕ(x1, . . . , xn)|x1 = 0] · (1 − y∗1) + E[Valueϕ(x1, . . . , xn)|x1 = 0] · (y∗1)
= E[Valueϕ(x1, . . . , xn)]

Someone suggested during the tutorial that one can also go through all the
random seeds: to make it efficient, we need to check that k-wise independence is
sufficient, where k is the number of variables in the largest clause of the instance.
It takes O(k log n) random bits to construct k-wise independence, and so iterating
them takes nO(k) time. Without a bound on the length of the largest clause, however,
we could have k = Θ(n)!

Problem solving

Problem 4. Consider the Knapsack problem, where the goal is to select a subset of
n items that fit in the knapsack (which can only store total weight W) in order to
maximise total value, where item i has value vi ≥ 0 and weight wi > 0.

Give the corresponding ILP.a)

Provide the LP relaxation, which corresponds to the Fractional Knapsack.b)

Solve the LP relaxation (using, e.g., Matlab with the function linprog) on the
following set of 10 items, with weight limit W = 20: (vi, wi) = (i2, i), 1 ≤ i ≤
10. See how this changes as you vary W from 20 to 55.

c)

Compare to the solution obtained by the Greedy algorithm for Fractional
Knapsack.

d)

Compare to the optimal solution of the ILP (for W = 20, then varying W
as before), also obtained by solving the ILP (on Matlab, with the function
intlinprog).

e)

2

compx270 Solution 10: Linear Programming and Randomised Rounding s2 2024

Solution 4. Matlab code:

v = (1:10)ˆ2; w=(1:10); W=20;
linprog(-v, w, [W], [],[], zeros(1,10), ones(1,10));
intlinprog(-v, 1:10, w, [W], [],[], zeros(1,10), ones(1,10));

a) Let xi ∈ {0, 1} denote the deciding variable for picking i into the knapsack.

maximise ∑
i

vi · xi

subject to
∑

i
wi · xi ⩽ W.

xi ∈ {0, 1}.

b) Relax the previous xi ∈ [0, 1].
c) (0, 0, 0, 0, 0, 0, 0, 0.125, 1, 1) for W = 20;

(0, 0, 0, 0, 0, 0, 0, 0.75, 1, 1) for W = 25.
d) Same results as greedy algorithm for Fractional Knapsack (sort the value from

high to low by value-per-weight and pick from top): v1
w1

⩾ v2
w2

⩾ · · · ⩾ vn
wn

. So for

this problem it is n2

n ⩾ · · · ⩾ 22

2 ⩾ 12

1 .
e) (1, 0, 0, 0, 0, 0, 0, 0, 1, 1)

Problem 5. Suppose the instance of Max-SAT has no negated “unit clause” (that is,
either a clause has length at least 2, or it is a non-negated variable xi). Instead of
setting each variable to 1 independently with probability 1/2 in the “obvious” ran-
domised algorithm, do the analysis when this is done with some (fixed) probability
p > 1/2.

Show that this gives (in expectation) a min(p, 1 − p2)-approximation.a)

Optimise the choice of p to obtain the best approximation possible.b)

(⋆) Show how to remove the “no negated unit clause” assumption: let S ⊆ [n]
be the set of variables such that both the unit clause ¬xi and the unit clause
xi exist in the instance ϕ, and T ⊆ [n] be the set of variables for which only
the unit clause ¬xi is in ϕ. Then consider the randomised rounding scheme
with sets each variable i independently to 1 with probability p if i /∈ T, and
with probability p (as before) otherwise, where p is the value found in the
previous subquestion. Show that opt(ϕ) ≤ m − |S|. Use this to conclude that
E[value(ϕ)] ≥ p · opt(ϕ).

c)

Compare this with the 1− 1/e approximation guarantee obtained by LP round-
ing in the lecture.

d)

Solution 5.

3

compx270 Solution 10: Linear Programming and Randomised Rounding s2 2024

If a clause only has one variable, then the probability that it is satisfied is p (it
is non-negated). Suppose a clause has length l with variables x1, . . . , xl. The
probability of satisfying it is 1 − pa(1 − p)b, where a is the number of negated
variables and b is the number of non-negated variables. Since 1 > p > 1

2 >
(1 − p), we have that

pa(1 − p)b < pa+b ⩽ p2.

So the probability of any one clause satisfying is at least min(p, 1 − p2). De-
note Ci the i-th clause. By linearity of expectation we can conclude that,

E

[
m

∑
i=1

1{Ci=1}

]
=

m

∑
i=1

E[1{Ci=1}] =
m

∑
i=1

Pr[1{Ci=1}]

⩾ m · min(p, 1 − p2)

⩾ opt(ϕ) · min(p, 1 − p2),

where opt(ϕ) is the value of an optimal solution for MAX-SAT of ϕ.

a)

Setting p = 1 − p2 and solving for p, we get the optimal value 1
2

(√
5 − 1

)
≈

0.618.
b)

For the variables in S, setting them to any value will fail at least one clause:
C1 = (xi), C2 = (¬xi). Note that we assume all m clauses are distinct (other-
wise look at the weighted version). So, we have

opt(ϕ) ⩽ m − |S|.

Now by the rounding scheme we have, for every clause involved in T, the
probability of satisfying it is at least p (equivalent to negating all these vari-
ables and solving the transformed ϕ′). For clauses (there are exactly 2|S| of
them) involved in S, we will exclude the ones with negated unit clause. De-
note S1 the non-negated unit clause involved in S and S2 the negated unit
clause involved in S – and note that |S1| = |S2| = |S|. And U = [m]\(S ∪ T).
We will write the expectation, setting p = 1 − p2 ≈ .618:

E[value(ϕ)] =
m

∑
i=1

E[1{Ci=1}] = ∑
i∈T∪S

E[1{Ci=1}] + ∑
i∈U

E[1{Ci=1}]

⩾ ∑
i∈T∪S1∪U

p

= p(m − |S|) ⩾ p · opt(ϕ).

c)

1 − 1
e ≈ 0.632 > 0.618, so the LP rounding gives a better bound.d)

Problem 6. Show that one can also obtain (directly) an expected 3
4 -approximation

to Max-SAT by using only randomised rounding: in Algorithm 20, instead of hav-
ing xi ∼ Bern(y∗i) (independently), we will set set them independently to 1 with

4

compx270 Solution 10: Linear Programming and Randomised Rounding s2 2024

probability
pi := f (y∗i),

where f : [0, 1] → [0, 1] is any function such that 1 − 1
4x ≤ f (x) ≤ 1

41−x .

Draw the plot of both upper and lower bounds on f , to see what the conditions
look like (and that such functions f do exist).

a)

In what follows, we fix any such function f . With the notation of Theorem 48,
show that, for any 1 ≤ j ≤ m,

Pr
[

Cj not satisfied
]
≤ 1

4z∗j

b)

Deduce that, for any 1 ≤ j ≤ m,

Pr
[

Cj satisfied
]
≥ 3

4
z∗j

Hint: use concavity.

c)

Conclude.d)

Solution 6.

In Mathematica:
Plot[{1 - 1/4ˆx, 1/4ˆ(1 - x)}, {x, 0.0, 1}, PlotLegends ->”Expressions”]

a)

5

compx270 Solution 10: Linear Programming and Randomised Rounding s2 2024

We have
Pr[Cj not satisfied] = ∏

i:xi∈Cj

(1 − f (y∗i)) · ∏
i:¬xi∈Cj

f (y∗i)

Pr[Cj not satisfied] = ∏
i:xi∈Cj

(1 − f (y∗i)) · ∏
i:¬xi∈Cj

f (y∗i)

⩽ ∏
i:xi∈Cj

1
4y∗i

· ∏
i:¬xi∈Cj

1
41−y∗i

= 4
−
(

∑i:xi∈Cj
y∗i +∑i:¬xi∈Cj

(1−y∗i)
)

⩽ 4−z∗j =
1

4z∗j
.

b)

Since g(x) = 1 − 1/4x is concave and g(0) = 0, we have that

Pr[Cj satisfied] ⩾ 1 − 1

4z∗j
= g(z∗j) = g(z∗j · 1 + (1 − z∗j) · 0)

⩾ z∗j · g(1) + (1 − z∗j) · g(0) =
3
4
· z∗j .

c)

By linearity of expectation and using the fact that the optimal solution to the
LP is at least as good as the optimal solution to the ILP, which has value
opt(ϕ):

E[value(ϕ)] ⩾
3
4
·

m

∑
j=1

z∗j ⩾
3
4
· opt(ϕ).

d)

Also fully detailed in the Design of Approximation Algorithms book by Williamson
and Shmoys, Section 5.6 (freely available at https://www.designofapproxalgs.

com/book.pdf).

Advanced

Problem 7. Show that one can also obtain (directly) an expected 3
4 -approximation

to Max-SAT by using only randomised rounding with a linear function of y∗i : in Al-
gorithm 20, instead of having xi ∼ Bern y∗i (independently), set them independently
to 1 with probability

pi :=
y∗i
2

+
1
4

.

6

https://www.designofapproxalgs.com/book.pdf
https://www.designofapproxalgs.com/book.pdf

	Warm-up
	Problem solving
	Advanced

