Warm-up

Problem 1. Consider a deck of 4*n* cards, with *n* \spadesuit , *n* \heartsuit , *n* \diamondsuit , and *n* \clubsuit . After it is shuffled uniformly at random, what is the expected number of consecutive pairs of the same suit?

Problem 2. A computer randomly generates a 2024-bit long binary string. What is the expected number of consecutive runs of 3 ones? (For instance, the 4-bit binary string 1111 has 2 such consecutive runs, while 0111 only has 1.)

Problem 3. An integer $1 \leq i \leq n$ is called a *fixed point* of a given permutation π : $\{1, 2, ..., n\}$ \rightarrow $\{1, 2, ..., n\}$ if $\pi(i) = i$. Show that the expected number of fixed points of a uniformly randomly chosen permutation π is 1. What is the variance?

Problem 4. (1) Give a random variable *X* over $[0, \infty)$ such that $\mathbb{E}[X] = \infty$. (2) Give a random variable *X* over **N** such that $E[X] = \infty$.

Problem 5. Prove the fact from the lecture: if *X* has a finite variance, then Var $X =$ $\mathbb{E}[X^2] - \mathbb{E}[X]^2$.

Problem solving

Problem 6. Prove the fact from the lecture: if *X* takes values in $\mathbb{N} = \{0, 1, 2, \ldots, \}$ and $\mathbb{E}[X]$ is finite, then $\mathbb{E}[X] = \sum_{n=1}^{\infty} \Pr[X \ge n].$

Problem 7. Consider the following map: each edge represents a path (of length one) between two different locations. To reach the cheese, the mouse needs to take a path connecting locations *M* and *C*.

Unfortunately, cats have heard of this plan, and will try to intercept the mouse. These cats are not the brightest, thankfully, and behave randomly: namely, each edge will be occupied by a cat, independently of all other edges, with some fixed probability $p \in (0, 1)$. The mouse cannot go on any edge that has a cat, of course. (Once the cats have randomly decided their position at the beginning, they stay there once and for all, effectively "killing" that edge as far as the mouse is concerned.)

- a) Give the probability that the mouse still has a path leading to the cheese.
- b) Give the probability that the mouse still has a path of length at most 3 leading to the cheese.
- c) Give the expected numbers of cats on the map.

Problem 8. Let *A* be an array of *n* distinct numbers. We say that an index $1 \le i \le n$ is "prefix-maximum" if $A[i]$ is the biggest number so far, that is, if $A[i] < A[i]$ for all $j < i$. Let pf(A) denote the number of prefix-maximum indices of A.

- a) What is pf(*A*) if *A* is sorted (increasing)?
- b) Suppose that we permute the elements of *A* uniformly at random to get an array *B*. Show that

$$
\mathbb{E}[pf(B)] = H_n = O(\log n),
$$

where $H_n = 1 + 1/2 + 1/3 + \cdots + 1/n$ is the *n*-th Harmonic number.

Advanced

Problem 9. Given two values $x, y \in \{0, 1\}$, their XOR $x \oplus y$ is equal to their sum modulo 2, or equivalently, is 1 if $x + y$ is odd, and 0 otherwise. This generalises to *n* bits as follows: for $x_1, \ldots, x_n \in \{0, 1\}$,

$$
x_1 \oplus x_2 \oplus \cdots \oplus x_n = \begin{cases} 0 \text{ if } \sum_{i=1}^n x_i \text{ is even} \\ 1 \text{ if } \sum_{i=1}^n x_i \text{ is odd} \end{cases}
$$

Suppose that X_1, \ldots, X_n, \ldots are independent Bernoulli random variables with parameter $p \in [0, 1]$, and, for any $n \ge 1$, let $Y_n = X_1 \oplus X_2 \oplus \cdots \oplus X_n$. This is itself a Bernoulli random variable: let's call its parameter *pn*.

- a) Compute the first few values of p_n when $p = 1/2$, $p = 0$, and $p = 1$. Establish the expression of p_n (as a function of *n*) for these particular cases. Interpret the result.
- b) In general, as a function of p, what is p_0 ? p_1 ? p_2 ?
- c) Give a recurrence relation for *pn*.
- d) Solve the recurrence to obtain the expression for p_n . Show that it always converge to 1/2. How fast?