
compx270 Solution 1: Randomness, Probability, and Algorithms s2 2024

Warm-up

Problem 1. Consider a deck of 4n cards, with n ♠, n ♡, n ♢, and n ♣. After it is
shuffled uniformly at random, what is the expected number of consecutive pairs of
the same suit?

Solution 1. This is n − 1: Let Xi ∈ {♠,♡,♢,♣} denote the suit of the i-th card in
the permuted deck. We want to compute the expectation of

X =
4n−1

∑
i=1

1{Xi=Xi+1}

For every 1 ≤ i ≤ 4n − 1,

Pr[ Xi = Xi+1 ] =
n − 1

4n − 1

since once Xi has a given suit, then there remain n − 1 cards of that particular suit,
out of 4n− 1 cards left in total. The result then follows from linearity of expectation.
As a sanity check: for n = 13 (standard deck of 52 cards), we get n − 1 = 12,
retrieving the result mentioned in class.

Problem 2. A computer randomly generates a 2024-bit long binary string. What is
the expected number of consecutive runs of 3 ones? (For instance, the 4-bit binary
string 1111 has 2 such consecutive runs, while 0111 only has 1.)

Solution 2. This is again by linearity of expectation, looking at the 2024 − 2 = 2022
indicator random variables Y1, . . . , Y2022 defined by

Yi = 1{Xi=Xi+1=Xi+2=1}

where X = (X1, . . . , X2024) ∈ {0, 1}2024 is the binary string. Now,

E[Yi] = Pr[ Xi = Xi+1 = Xi+2 = 1 ] = Pr[ Xi = 1 ] ·Pr[ Xi+1 = 1 ] ·Pr[ Xi+2 = 1 ] =
1
23

(the second inequality as the bits are independent) and so the answer is 2024−2
23 =

2022
8 = 252.75.

Problem 3. An integer 1 ≤ i ≤ n is called a fixed point of a given permutation
π : {1, 2, . . . , n} → {1, 2, . . . , n} if π(i) = i. Show that the expected number of fixed
points of a uniformly randomly chosen permutation π is 1. What is the variance?

Solution 3. Linearity of expectation. Specifically, let Xi ∈ {0, 1} be the indicator
random variable of whether π(i) = i (that is, it is 1 if, and only if, i is a fixed
point of the random permutation π). Of course, the Xi’s are not independent (but
we don’t care). Since a given element i (only looking at this element) has value
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π(i) equal to any fixed element of {1, 2, . . . , n} with the same probability, we get
Pr[ Xi = 1 ] = 1/n. The expected number E[X] of fixed points is then

E[X] = E

[
n

∑
i=1

Xi

]
=

n

∑
i=1

E[Xi] =
n

∑
i=1

Pr[ Xi = 1 ] =
n

∑
i=1

1
n
= 1

The answer is 1 for the variance as well, apply linearity of expectation after
expanding the square of the sum and dividing it into ∑i and ∑i ̸=j. In more detail,
since Var X = E

[
X2] − E[X]2 and we just got that E[X]2 = 12 = 1, it suffices to

show that E
[
X2] = 2. We have:

E
[

X2
]
= E

( n

∑
i=1

Xi

)2
 = E

[
n

∑
i=1

n

∑
j=1

XiXj

]

=
n

∑
i=1

n

∑
j=1

E
[
XiXj

]
=

n

∑
i=1

E
[

X2
i

]
+

n

∑
1≤i ̸=j≤n

E
[
XiXj

]
=

n

∑
i=1

E[Xi] + ∑
1≤i ̸=j≤n

Pr[π(i) = i and π(j) = j ] (since X2
i = Xi)

= 1 + ∑
1≤i ̸=j≤n

1
n
· 1

n − 1
(see below)

= 1 + 1 = 2 (The second sum has n(n − 1) terms)

concluding the proof. Now, why do we have Pr[π(i) = i and π(j) = j ] = 1
n · 1

n−1?
We pick uniformly at random two distinct values in {1, 2, . . . , n} for (π(i), π(j)):
there are n(n − 1) possibilities; out of these, only one is good.

Problem 4. (1) Give a random variable X over [0, ∞) such that E[X] = ∞. (2) Give
a random variable X over N such that E[X] = ∞.

Solution 4. (1) Random variable with probability density function f (x) = 2
π

1
x2+1 .

(2) Random variable with probability mass function p(n) = 6
π2

1
(n+1)2 .

Problem 5. Prove the fact from the lecture: if X has a finite variance, then Var X =

E
[
X2]− E[X]2.

Solution 5. Expand inside the expectation, hope for the best.

Problem solving
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Problem 6. Prove the fact from the lecture: if X takes values in N = {0, 1, 2, . . . , }
and E[X] is finite, then E[X] = ∑∞

n=1 Pr[ X ≥ n ].

Solution 6. Swap sums, hope for the best.

Problem 7. Consider the following map: each edge represents a path (of length
one) between two different locations. To reach the cheese, the mouse needs to take
a path connecting locations M and C.

MMouse C Cheese

Unfortunately, cats have heard of this plan, and will try to intercept the mouse.
These cats are not the brightest, thankfully, and behave randomly: namely, each
edge will be occupied by a cat, independently of all other edges, with some fixed
probability p ∈ (0, 1). The mouse cannot go on any edge that has a cat, of course.
(Once the cats have randomly decided their position at the beginning, they stay
there once and for all, effectively “killing” that edge as far as the mouse is con-
cerned.)

Give the probability that the mouse still has a path leading to the cheese.a)

Give the probability that the mouse still has a path of length at most 3 leading
to the cheese.

b)

Give the expected numbers of cats on the map.c)

Solution 7.

The idea here is to simplify the problem by asking questions of the form “is
there no cat” because while there are a large number of ways to have “a cat,”
there is only one way to have none of something.

Pr[There is a path] = 1 − Pr[There is no path]
= 1 − Pr[Top path has a cat] · Pr[Middle path has a cat]

· Pr[Bottom path has a cat]
= 1 − (1 − Pr[Top path has no cats]) · (1 − Pr[Middle path has no cats])

· (1 − Pr[Bottom path has no cats])

= 1 − (1 − (1 − p)2)(1 − (1 − p)3)(1 − (1 − p)4)

Small “sanity check”: for p = 0, we get a probability 1 − 0 · 0 · 0 = 1, which
makes sense (there is no cat anywhere). For p = 1, we get 1 − 1 · 1 · 1 = 0,
which also makes sense (there are cats everywhere).

a)
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We just remove the bottom path from our working above, giving

1 − (1 − (1 − p)2)(1 − (1 − p)3).

b)

If we define an indicator variable Xe such that Xe = 1 if edge e (in the set of
edges E) has a cat, and count by taking X = ∑e∈E Xe, we get

E[X] = E

[
∑
e∈E

Xe

]
= ∑

e∈E
E[Xe] = 9p

c)

Problem 8. Let A be an array of n distinct numbers. We say that an index 1 ≤ i ≤ n
is “prefix-maximum” if A[i] is the biggest number so far, that is, if A[j] < A[i] for
all j < i. Let pf(A) denote the number of prefix-maximum indices of A.

What is pf(A) if A is sorted (increasing)?a)

Suppose that we permute the elements of A uniformly at random to get an
array B. Show that

E[pf(B)] = Hn = O(log n) ,

where Hn = 1 + 1/2 + 1/3 + · · ·+ 1/n is the n-th Harmonic number.

b)

Solution 8.

Every element is bigger than the ones before it (because the array is sorted)
and we say that the first element is a prefix maximum (as it is bigger than
nothing) so pf(A) = n.

a)

Define an indicator variable Xi which is 1 if Bi is a prefix maximum. Then we

have pf(B) =
n
∑

i=1
Xi,

E[pf(B)] =
n

∑
i=1

E[Xi]

Where E[X1] is 1 (it is always the largest so far), E[X2] is the probability that
given two distinct elements, we randomly choose the largest, which is 1/2,
and so on. This gives the series

E[pf(B)] =
n

∑
i=1

1
i
= O(log n).

b)

Advanced
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Problem 9. Given two values x, y ∈ {0, 1}, their XOR x ⊕ y is equal to their sum
modulo 2, or equivalently, is 1 if x + y is odd, and 0 otherwise. This generalises to
n bits as follows: for x1, . . . , xn ∈ {0, 1},

x1 ⊕ x2 ⊕ · · · ⊕ xn =

{
0 if ∑n

i=1 xi is even
1 if ∑n

i=1 xi is odd

Suppose that X1, . . . , Xn, . . . are independent Bernoulli random variables with pa-
rameter p ∈ [0, 1], and, for any n ≥ 1, let Yn = X1 ⊕ X2 ⊕ · · · ⊕ Xn. This is itself a
Bernoulli random variable: let’s call its parameter pn.

Compute the first few values of pn when p = 1/2, p = 0, and p = 1. Establish
the expression of pn (as a function of n) for these particular cases. Interpret
the result.

a)

In general, as a function of p, what is p0? p1? p2?b)

Give a recurrence relation for pn.c)

Solve the recurrence to obtain the expression for pn. Show that it always
converge to 1/2. How fast?

d)

Solution 9.

For p = 1/2, we get p0 = 0, and pn = 1/2 for every n ≥ 1. (XOR-ing
independent fair random bits still gives a fair random bit). For p = 0, then
Yn = 0 for all n, and so pn = 0 for n ≥ 0. For p = 1, then Yn = 0 (with
probability 1) for n even and 1 for n odd, and so pn = 1 − (−1)n for n ≥ 0.

a)

p0 = 0 (Y0 is the sum of. . . nothing, so is always equal to 0); p1 = p by
definition, while p2 = 2p(1 − p) (the probability that X1 ̸= X2: exactly one of
the two is must be equal to 1, the other 0).

b)

We have Yn+1 = Yn ⊕ Xn+1. So for Yn+1 to be equal to 1, we need either
(1) Yn = 0 and Xn+1 = 1 or (2) Yn = 1 and Xn+1 = 0. These are disjoint events,
so the probability pn+1 = Pr[Yn+1 = 1] is the sum of the probabilities of these
two events; by recurrence, we have that the first has probability (1 − pn) · p,
and the second has probability pn · (1 − p).
We then get the recurrence

pn+1 = (1 − p)pn + p(1 − pn)

or, massaging the right-hand-side,

pn+1 = (1 − 2p)pn + p

c)
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Now, solving this recurrence will give the solution:

pn =
1
2
(1 − (1 − 2p)n), n ≥ 0

Before proving it, note that this converges exponentially fast to 1/2 for p ∈
(0, 1), is stationary at 0 for p = 0, and does not converge for p = 1. This is
consistent with questions a) and b) (important to check!)

d)

How do we get there?

• Nice way: 1/2 seems special (as it is a fixed point of the recurrence
relation, as shown in a)), so let’s “center” on 1/2: that is, let qn = pn −
1/2, and rewrite:

qn+1 + 1/2 = (1 − 2p)(qn + 1/2) + p

which gives, expanding and simplifying:

qn+1 = (1 − 2p)qn

from which we can easily get qn+1 = (1 − 2p)n+1q0. But that means

pn+1 = (1 − 2p)n+1q0 +
1
2

and since q0 = p0 − 1/2 = −1/2, we get

pn+1 =
1
2

(
1 − (1 − 2p)n+1

)
as claimed.

• Painful, general way: first rewrite it as a linear system:(
pn+1

pn

)
=

(
1 − 2p p

1 0

)(
pn
1

)
so that (

pn+1
pn

)
=

(
1 − 2p p

1 0

)n (p
1

)
We can then try to diagonalise the matrix to compute its n-power more
easily: if (

1 − 2p p
1 0

)
= P−1∆P

with ∆ diagonal, then (
1 − 2p p

1 0

)n

= P−1∆nP

and ∆n is easy to compute (as ∆ is diagonal). It’s still horrendous though.
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