The University of Sydney

COMMONWEALTH OF AUSTRALIA

Copyright Regulations 1969

WARNING

This material has been reproduced and communicated to you by or on behalf
of the University of Sydney pursuant to Part VB of the Copyright Act 1968
(the Act). The material in this communication may be subject to copyright under
the Act. Any further copying or communication of this material by you may be
the subject of copyright protection under the Act.

Do not remove this notice.

Page 1

COMPx270: Randomised and
Advanced Algorithms

Some housekeeping

- Mid*-semester break!

- A3isout (Oct 11 +5), A2 (after Simple Extension) due tomorrow
- Don'tforget the "participation" assignment (Oct 18)

- lwillbe releasing a sample exam over the break (Friday w.h.p.)

- Feedback welcome

The University of Sydney

Back from last week: Distinct Elements

The University of Sydney Page 4

The

Distinct Elements, the Tidemark (AMS) algorithm (1/4)

. Pick h: [n] — [n] from a strongly universal hashing family
2z 0
. foralll <i<mdo
Get item a; € [1]
if zeros(h(a;)) > z then
z < zeros(h(a;))

7 return /2 - 27

AN I S

University of Sydney

age

Distinct Elements, the Tidemark (AMS) algorithm (2/4)

1: Pick h: [n] — [n] from a strongly universal hashing family
22+ 0

3 foralll <i<mdo

4: Get item a; € [n]

5. if zeros(h(a;)) > z then

6: z « zeros(h(a;))

7. return /2 - 27

The University of Sydney Page 6

Distinct Elements, the Tidemark (AMS) algorithm (3/4)

1: Pick h: [n] — [n] from a strongly universal hashing family
22+ 0

3 foralll <i<mdo

4: Get item a; € [n]

5. if zeros(h(a;)) > z then

6: z « zeros(h(a;))

7. return /2 - 27

The University of Sydney Page 7

Distinct Elements, the Tidemark (AMS) algorithm (4/4)

Theorem 42. The (median trick version of the) TIDEMARK (AMS)
algorithm is a randomised one-pass algorithm which, for any given
parameter 6 € (0,1], provides an estimate d of the number d of distinct
elements of the stream such that, for some absolute constant C > 0,

Pr{%-dﬁcfﬁ(ﬁ'd] >1-0

with space complexity

s = O(logn-log%) :

The University of Sydney

Page 8

Can we do better?

The University of Sydney Page 9

Distinct Elements, the BJKST algorithm (1/4)

Input: Parameter ¢ € (0, 1]
1 Set k < O(log® n/¢*), T < ©(1/¢?)
2: Pick h: [n] — [n] from a strongly universal hashing family
3: Pick g: [n] — [k] from a strongly universal hashing family

z+0,B+ @
- foralll <i<mdo
Get item a; € [n]
if zeros(h(a;)) > z then
B + BU{(g(a;),zeros(h(a;)))}
while |B| > T do
10: z4+—z+1
11: Remove every (a,b) with b < z from B

R A

12: return |B| - 2*

The University of Sydney

Page 10

Input: Parameter ¢ € (0, 1]
© Set k « O(log®n/¢4), T« @(1/¢%)
: Pick h: [n] — [n] from a strongly universal hashing family

&)

Distinct Elements, the BJKST algorithm (2/4)

3 Pick g: [n] — [k] from a strongly universal hashing family
42+ 0,B+<©@
5: foralll <i < m do
6. Getitem a; € 1]
7: if zeros(h(a;)) > z then
8: B + BU{(g(a;),zeros(h(a;)))}
o while |B| > T do
10: z+z+1
11: Remove every (a,b) with b < z from B

12: return |B| - 27

The University of Sydney Page 11
9

Input: Parameter ¢ € (0, 1]
© Set k « O(log®n/¢4), T« @(1/¢%)
: Pick h: [n] — [n] from a strongly universal hashing family

&)

Distinct Elements, the BJKST algorithm (2/4)

3 Pick g: [n] — [k] from a strongly universal hashing family
42+ 0,B+<©@
5: foralll <i < m do
6. Getitem a; € 1]
7: if zeros(h(a;)) > z then
8: B + BU{(g(a;),zeros(h(a;)))}
o while |B| > T do
10: z+z+1
11: Remove every (a,b) with b < z from B

12: return |B| - 27

The University of Sydney Page 12
9

The

Distinct Elements, the BJKST algorithm (4/4)

University of Sydney

Theorem 43. The (median trick version of the) BJKST algorithm is a
randomised one-pass algorithm which, for any given parameters €,0 €
(0,1], provides an estimate d of the number d of distinct elements of the
stream such that, for some absolute constant C > 0,

Prl(1-¢)-d<d<(14e)d|>1-0

with space complexity

s = O((logn + log(l/e);loglogn) —10g§) :

Page 13

... Can we do better?

The University of Sydney Page 14

Back to Week 9!

The University of Sydney Page 15

The

A question ~

You design a streaming algorithm A to solve some problem. The stream
of data arrives.

University of Sydney Page 16

A guestion

You design a streaming algorithm A to solve some problem. The stream
of data arrives.

628, 516, 163, 509, 15, 499,772,588,737,439,79, 866, 186, 18,
854, 459,146, 518,748,737, 685, 188, 939,724,27,719, 263, 795,
120, 573, 853, 132, 522, 3, 298, 123, 932,993, 180, 674, 1, 619, 989,
142, 496,178, 191,524,716, 501,677,712, 452,768, 591, 551, 439,
397,229,214, 43, 639, 353,610, 737, 203, 933, 279,877, 30, 513,
518,616,714, 633,804, 422,731, 867, 184, 124,881, 595, 193, 254,
240, 4, 260, 303, 319,757,723, 309, 365, 278, 512, 658, 233, 393,

875

The University of Sydney

The

A question ~

You design a streaming algorithm A to solve some problem. The stream
of data arrives. A outputs its answer:

21.5

University of Sydney Page 18

The

A question ~

Oh, no! That wasn't the end. More data arrives.

University of Sydney

Page 19

The University of Sydney

A guestion

Oh, no! That wasn't the end. More data arrives.

834, 992,528,12,181, 274,159, 150,716,71,755,4, 324, 398, 802,
176, 302, 941, 678,934, 546,753, 812,47,755,721,893, 53,410

Page 20

The

A question ~

Oh, no! That wasn't the end. More data arrives. A outputs its answer on
this:

18.1

University of Sydney Page 21

The

A question ~

How do you combine 21.5 and 18.1 to get the answer on the whole
data stream?

University of Sydney

Page 22

Sketching

The University of Sydney Page 23

Even better: linear sketching

The University of Sydney Page 24

Theorem 39. The Mi1srRA-GRIES algorithm is a deterministic one-pass

F req Ueni' E Iemeni's (Heq Vy Hii'i'erS) algorithm which, for any given parameter ¢ € (0, 1], provides fl,. y .,ﬁ, of

all element frequencies such that

fj—gmgf}gfj, j € [n]

Remember Misra-Gries?

with space complexity s = O(log(mmn)/¢). (In particular, it can be used
to solve the MAJORITY problem in two passes.)

The University of Sydney Page 25

Frequent Elements (Heavy Hitters): €4, €5, etc.

The University of Sydney Page 26

Frequent Elements (Heavy Hitters): CountSketch (1/4)

Input: Parameters ¢,0 € (0,1]
1: Set k < O(1/¢%), and initialize an array C of size k to zero
2: Pick h: [n] — [k| from a strongly universal hashing family
3: Pick g: [n] — {—1,1} from a strongly universal hashing family
4: forall1 <i < m do
52 Getitema; = (j,c) € [n] x {—B,...,B} > Assume B = 0(1)
6: Clh(j)] < Clh(j)] +c-g(j)

Output: On query j € [1], return f; < g(j) - C[h(j)]

e University of Sydney Page 27

Input: Parameters ¢,6 € (0,1]

1: Set k + O(1/¢%), and initialize an array C of size k to zero

2 Pick h: [n] — [k] from a strongly universal hashing family
: Pick g: [n] = {—1,1} from a strongly universal hashing family
cforalll <i<mdo
Get item a; = (j,¢) € [n] x {—B,...,B} > Assume B =O(1)
CIh(] — CIRG)] + < - 8())
Output: On query j € [n], return f; + g(j) - C[h(j)]

Frequent Elements (Heavy Hitters): CountSketch (2/4)

The University of Sydney Page 28

Input: Parameters ¢,6 € (0,1]

1: Set k + O(1/¢%), and initialize an array C of size k to zero

2 Pick h: [n] — [k] from a strongly universal hashing family
: Pick g: [n] = {—1,1} from a strongly universal hashing family
cforalll <i<mdo
Get item a; = (j,¢) € [n] x {—B,...,B} > Assume B =O(1)
CIh(] — CIRG)] + < - 8())
Output: On query j € [n], return f; + g(j) - C[h(j)]

Frequent Elements (Heavy Hitters): CountSketch (3/4)

The University of Sydney Page 29

The

Frequent Elements (Heavy Hitters): CountSketch (4/4)

Theorem g44. The (median trick version of the) COUNTSKETCH algo-
rithm is a randomised one-pass sketching algorithm which, for any given
parameters €, € (0,1], provides a (succinctly represented) estimate f of
frequency vector f of the stream such that, for every j € [n]

Pr[|fi—fi| <ellfll,| = 1-0

with space complexity

. O(log(nni) log %) |

g2

University of Sydney

Page 30

The

Frequent Elements (Heavy Hitters): CountMinSketch (1/4)

University of Sydney

Input: Parameters ¢,0 € (0,1]
1 Setk < O(1/¢)and T <+ Of(log(1/¢)), and initialize a two-
dimensional array C of size T X k to zero
2: Pick hy, ..., hr: [n] — [k] independently from a strongly uni-
versal hashing family
forall1 <i: < m do
Getitem a; = (j,c¢) € [n] x {0,...,B} > Assume B = O(1)
foralll <t < Tdo
ClH][he ()] Clt) ()] +

Output: On query j € [n], return f; + ming<;<1 C[t][h:(j)]

Page 31

Input: Parameters ¢, 0 € (0, 1]
1: Setk ¢ O(1/e)and T <+ O(log(1/¢)), and initialize a two-
dimensional array C of size T X k to zero

Frequent Elements (Heavy Hitters): CountMinSketch (2/4) i, sty tomesomir:

: forall1 <i < mdo
Getitem a; = (j,c) € [n] x {0,...,B} > Assume B = O(1)
foralll <t < Tdo
CIA[()] < Cle] (e ()] + ¢
Output: On query j € [n], return ff- — ming << C[t][Re(f)]

AR I)

The University of Sydney Page 32

Input: Parameters ¢, 0 € (0, 1]
1: Setk ¢ O(1/e)and T <+ O(log(1/¢)), and initialize a two-
dimensional array C of size T X k to zero

Frequent Elements (Heavy Hitters): CountMinSketch (3/4) = i, sty ey

: forall1 <i < mdo
Getitem a; = (j,c) € [n] x {0,...,B} > Assume B = O(1)
foralll <t < Tdo
CIA[()] < Cle] (e ()] + ¢
Output: On query j € [n], return ff- — ming << C[t][Re(f)]

AR I)

The University of Sydney Page 33

The

Frequent Elements (Heavy Hitters): CountMinSketch (4/4)

Univers

ity of Sydney

Theorem 45. The COUNTMINSKETCH algorithm is a randomised ore-
pass sketching alQorithm which, for any given parameters ¢,0 € (0,1],
provides a (succinctly represented) estimate f of frequency vector f of the

stream such that, for every j €

Pfof—ff

o

with space complexity

1]

<ellfill, | =1-0

log(nm)

- log —)

(Moreouver, ?J; is always an overestimate: ?J; > fjforall j € [n].)

Page 34

Wait a minvte...

This seems strictly worse than Misra-Gries!
— Randomised instead of deterministic!

— Uses more space!
— Also in the cash register model!

— Also an{; guarantee!

The University of Sydney

Page 35

Wait a minvte...

This seems strictly worse than Misra-Gries!

Randomised instead of deterministic!
Uses more space!

Also in the cash register model!

Also an {; guarantee!

Yes, but:

The Univers

Linear sketch!
Much faster per time step!
Can be extended to the strict turnstile model!

ity of Sydney

Page 36

Recap

The University of Sydney Page 37

	Slide 1
	Slide 2: COMPx270: Randomised and Advanced Algorithms Lecture 9: Streaming and Sketching II
	Slide 3: Some housekeeping
	Slide 4: Back from last week: Distinct Elements
	Slide 5: Distinct Elements, the Tidemark (AMS) algorithm (1/4)
	Slide 6: Distinct Elements, the Tidemark (AMS) algorithm (2/4)
	Slide 7: Distinct Elements, the Tidemark (AMS) algorithm (3/4)
	Slide 8: Distinct Elements, the Tidemark (AMS) algorithm (4/4)
	Slide 9: Can we do better?
	Slide 10: Distinct Elements, the BJKST algorithm (1/4)
	Slide 11: Distinct Elements, the BJKST algorithm (2/4)
	Slide 12: Distinct Elements, the BJKST algorithm (2/4)
	Slide 13: Distinct Elements, the BJKST algorithm (4/4)
	Slide 14: … Can we do better?
	Slide 15: Back to Week 9!
	Slide 16: A question 🪡
	Slide 17: A question 🪡
	Slide 18: A question 🪡
	Slide 19: A question 🪡
	Slide 20: A question 🪡
	Slide 21: A question 🪡
	Slide 22: A question 🪡
	Slide 23: Sketching
	Slide 24: Even better: linear sketching
	Slide 25: Frequent Elements (Heavy Hitters)
	Slide 26: Frequent Elements (Heavy Hitters): ℓ₁, ℓ₂, etc.
	Slide 27: Frequent Elements (Heavy Hitters): CountSketch (1/4)
	Slide 28: Frequent Elements (Heavy Hitters): CountSketch (2/4)
	Slide 29: Frequent Elements (Heavy Hitters): CountSketch (3/4)
	Slide 30: Frequent Elements (Heavy Hitters): CountSketch (4/4)
	Slide 31: Frequent Elements (Heavy Hitters): CountMinSketch (1/4)
	Slide 32: Frequent Elements (Heavy Hitters): CountMinSketch (2/4)
	Slide 33: Frequent Elements (Heavy Hitters): CountMinSketch (3/4)
	Slide 34: Frequent Elements (Heavy Hitters): CountMinSketch (4/4)
	Slide 35: Wait a minute...
	Slide 36: Wait a minute...
	Slide 37: Recap

