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A

B=V\A

B

Global Minimum Cut

Input: A connected, undirected graph G = (V, E).

For a set AV let (A) = {(u,v)E : uA, vV\A}.

v1

v2 v3

v6 v5 v4

v7

|(A)| = 4
Aim:  Find a cut (A, B) minimizing |(A)|.
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AB

Global Minimum Cut

v1

v2 v3

v6 v5 v4

v7

Aim:  Find a cut (A, B) of minimum cardinality.
|(A)| = 2

Input: A connected, undirected graph G = (V, E).

For a set AV let (A) = {(u,v)E : uA, vV\A}.
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Global Minimum Cut

Applications:  Partitioning items in a database, identifying clusters of related documents, 
network reliability, network design, circuit design, TSP solvers.

Network flow solution. 

– Replace every edge (u, v) with two directed edges (u, v) and (v, u).

– Pick some vertex s and compute min s-v cut separating s from each other vertex v  V.

Running time: O((n-1)·MaxFlows)  
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Global Minimum Cut

Running time: O((n-1)·MaxFlows) 



The University of Sydney Page 7

Karger’s Contraction Algorithm

Definition: A multigraph is a graph that allows multiple edges 
   between a pair of vertices.

3
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Karger’s Contraction Algorithm

Definition: A multigraph is a graph that allows multiple edges 
   between a pair of vertices.

3
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Karger’s Contraction Algorithm

Let G=(V,E) be a multigraph (without self-loops).

Contraction of an edge e=(u,v)E     G\e

• Replace u and v by single new super-node w

• Replace all edges (u,x) or (v,x) with an edge (w,x)

• Remove self-loops to w. 
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Karger’s Contraction Algorithm
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Karger’s contraction algorithm
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Karger’s contraction algorithm
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Karger’s contraction algorithm
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Karger’s contraction algorithm
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Karger’s contraction algorithm
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Karger’s contraction algorithm
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Karger’s contraction algorithm
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Karger’s contraction algorithm
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Karger’s contraction algorithm
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Karger’s contraction algorithm
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Karger’s contraction algorithm
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Karger’s contraction algorithm

The End.
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Karger’s Contraction Algorithm

u

v

x

y

Observation: An edge (u,v) contraction preserves the cuts (A,B) 
    where u and v are both in A or both in B.

w

x

y
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BA

Karger’s Contraction Algorithm

u

v

x

y

Observation: An edge (u,v) contraction preserves the cuts (A,B) 
    where u and v are both in A or both in B.

w

x

y


A

B
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Karger’s Contraction Algorithm

Observation: An edge (u,v) contraction preserves the cuts (A,B) 
    where u and v are both in A or both in B.

If u,vA then G(A) = G\e(A). 

(with u and v replaced with “uv”) 
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Karger’s Contraction Algorithm

Observation: If (A,B) is a minimum cut, then we are less likely to 
choose an edge (u,v) crossing it!
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Karger’s Contraction Algorithm

Claim: This algorithm has a reasonable chance of finding 
 a min cut. 
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Prove the claim

Claim:  If C is a min-cut, then the algorithm returns it with probability at least 2/n2.



The University of Sydney Page 29

Prove the claim

Claim:  If C is a min-cut, then the algorithm returns it with probability at least 2/n2.

Proof.
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To amplify the probability of success, run the contraction algorithm 
many times.

     

Amplification
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To amplify the probability of success, run the contraction algorithm 
many times.

Claim:  If we repeat the contraction algorithm r       times with 
independent random choices, the probability that all runs fail is at 
most (1/e)r.      

Amplification

n

2
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Karger’s Contraction Algorithm

Running time? 
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Karger’s Contraction Algorithm

Running time? 

The algorithm is iterated O(n2 log n) 
times…total running time O(n4 log n).



The University of Sydney Page 35

Karger’s Contraction Algorithm

Can we do better? 
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Improved algorithm

Improvement.  [Karger-Stein 1996]

– Early iterations are less risky than later ones: probability of 
contracting an edge in min cut hits 50% when n/√2 nodes remain.

– Run contraction algorithm until n/√2 nodes remain.

– Run contraction algorithm twice on resulting graph, and return best of 
two cuts. 
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Improved algorithm
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Improved algorithm: Karger-Stein

Running time? 
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Improved algorithm: Karger-Stein

Running time? 
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Improved algorithm: Karger-Stein

Success probability? 
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Improved algorithm: Karger-Stein

Success probability? 
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Improved algorithm: Karger-Stein

Theorem.  [Karger-Stein 1996]  The Karger-Stein algorithm runs 
in time O(n2 log n) and returns a min cut with probability at least 
Ω(1/log n).

Corollary. The “best-of-T” Karger-Stein algorithm runs in time 
O(n2 log2n) and returns a min cut with probability at least 99%.
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Improved algorithm: Karger-Stein

Theorem.  [Karger-Stein 1996]  The Karger-Stein algorithm runs 
in time O(n2 log n) and returns a min cut with probability at least 
Ω(1/log n).

Corollary. The “best-of-T” Karger-Stein algorithm runs in time 
O(n2 log2n) and returns a min cut with probability at least 99%

Best known.  [Karger 2000] O(m log3n).
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And now, for something completely different
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And now, for something completely different?

Theorem.  An undirected graph G=(V,E) has at most _______ 
distinct min cuts.
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And now, for something completely different?

Theorem.  An undirected graph G=(V,E) has at most 
𝑛(𝑛−1)

2

distinct min cuts.
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And now, for something completely different?

Theorem.  An undirected graph G=(V,E) has at most 
𝑛(𝑛−1)

2

distinct min cuts. And this is tight.
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And now, for something completely different?

Theorem.  An undirected graph G=(V,E) has at most 
𝑛(𝑛−1)

2

distinct min cuts.

Proof.
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