COMMONWEALTH OF AUSTRALIA
Copyright Regulations 1969
WARNING

This material has been reproduced and communicated to you by or on

behalf of the University of Sydney pursuant to Part VB of the Copyright Act
1968 (the Act). The material in this communication may be subject to

copyright under the Act. Any further copying or communication of this
material by you may be the subject of copyright protection under the Act.

Do not remove this notice.

COMPx270: Randomised and
Advanced Algorithms

Connect with Student Wellbeing

Everything you need to know about student life, wellbeing and
support can be found on the landing page:

Students can self-refer via the webpage by clicking “Connect
with us”:

Connect with us

Complete our registration form and a clinician

will call you to discuss your support needs.

%

Phone: 02 72551562 / 8627 8433
Address: Level 5, Jane Foss Russell Building, G02

An announcement (or three)

- HW1, Problem 5: B should be 23 (updated assignment tonight)
- Office Hours (OH) this Friday, 3:30-5pm, J12 302 + Zoom

- Simple extensions (you have them by default!)

A guestion

You have a randomised algorithm A which runs in time T(n) and

solves task X (say, decision problem) with probability .99. Is there a
deterministic algorithm B which solves X and runs in time...

* O(T(n))

* poly(T(n))

* exp(T(n))

* No/we don't know

A guestion

You have a randomised algorithm A which runs in time T(n) and

solves task X (say, decision problem) with probability .99. Is there a
deterministic algorithm B which solves X and runs in time...

e O(T(n))?

* poly(T(n))?

e exp(T(n)) Vv

* No/we don't know

An answer?

That's complicated. This is what derandomization asks, and there
Is a lot of work on this: one of the major unsolved question in
theoretical computer science.

Pv. BPP

g
C/QQO& o@ J.Qw(mn E&@Q*wa
e/ a PQ’—W Haw{; Carbds /’%v

Let's not stop here though

We know how to derandomize some algorithms, and there are
some general techniques.

Method 1: PRNG &«

The goal is to reduce the amount of randomness required, by
generating a lot of "good enough" pseudorandom bits: good enough

to fool the algorithm.

g;‘@%@Qﬂe§OH5h s

VAéJkY ™0 A(6(Ue)), A(U,)) £®

. =
Dl’ahd_(c Mbanes FAacT Under ((FQMLQTQ %me};on ‘/)

A m@&dﬁwﬁwﬂg>

Method 1: PRNG &+

Why is that useful?
* Random bits don't grow on trees!
* Derandomisation (method 2)

Why is this bad?
* Conditional (under assumptions)

Method 2: Brute force

If the algorithm uses a small number of random seeds, check'em
all.

Method 2: Brute force

If the algorithm uses a small number of random seeds, check'em
all.

Require: Input x

i forall r € {0,1}" do . /]f]-
2y« Ax;r) > Run A on x with randomness r <

3> if V(x,y) =1 then > Verify if y is a good solution <— /l\/
4 return y > If so, we are done

©<22(_'; +Ty) >

Detalils.

Method 2: Brute force -

What if verifying is hard?

@)P[/J.m,,m,g>c>

Method 2: Brute force -

What if verifying is hard?/~7

Majority vote!
Median trick!

/(‘ ﬂ%é&ﬁ“

P'— [A(x) = _\L(x)j > %

P —

Method 2: Brute force

What if the algorithm does not use a small number of random bits?

Method 2: Brute force

What if the algorithm does not use a small number of random bits?

Well, these PRNGs can come in handy...

Method 2: Brute force

What if the algorithm does not use a small number of random bits?

Or (sometimes) we can reduce the randomness by carefully looking
at the proof.

Method 2: Brute force = via pairwise independence

Derandomizing Max-Cut

Max-CuT: Given an (undirected) graph G = (V,E) onn
vertices and 77 edges, output a cut (A, B) (partition of V') max-
imising the number c(A, B) of edges between A and B.

(It's NP-Hard)

Method 2: Brute force = via pairwise independence \

O
LA
. . (
Derandomizing Max-Cut ! @

Max-CuT: Given an (undirected) graph G = (V,E) onn
vertices and 77 edges, output a cut (A, B) (partition of V') max-
imising the number c(A, B) of edges between A and B.

But we can get a V2-approximation!

Method 2: Brute force via pairwise independence

1: (A, B) < (@,@)
2: forall v € V do

3 Xy < Bern(1/2) > Independent of previous choices
4: if X, =1thenaddvto A

5 else add v to B

6

. return (A, B)

Method 2: Brute force = via pairwise independence A

Theorem.
_ 1 1
Elc(A,B)| > 5M 2 5 OPT(G).
c(AD)=2
Proof. For eéE/)Beéc mobteadss Lgee_cd' .

E-(43) ﬂ@@qeﬂ = T R[] - T b
e el T e
- 2 (E[u EAVERT | P{ué?,véA])

Q:(u) — Nn/o

) " ZR{uechA)H{veB) = L L.
< lE](—z—rzl. = y/y) 2 2 4
7

Method 2: Brute force via pairwise independence

Theorem. This can be derandomised.

Method 2: Brute force = via pairwise independence

Theorem. This can be derandomised.

1: (A, B) — (@,@)
2: forall v € V do

/3:_ —~ Xy < Bern(1/2) > Independent of previous cho;ces
%u; B+)& if X, =1thenaddvto A <) W
5: else add v to B W&A N X’v)% w\&fk

6: return (A, B)

A
Method 2: Pairwise independent hash functions I%’qu’{:/%l

/

Definition 22.1. A family of functions 7 C {h: X —)} isa
family of pairwise independent hash functions, or a strongly universal
hash family, if, for every x,x’ € X with x # x’ and every y, v’ €),
1

VI

where the probability is over the uniformly random choice of /1 €

#)

"o
Lo be
wand o ,

Pr [h(x) =y h(x') =y

Method 2: Pairwise independent hash functions

Fact. Small families of pairwise independent hash functions exist.

Method 2: Pairwise independent hash functions

Fact. Small families of pairwise independent hash functions exist.

’me]'jé*?é ? -] ﬁ?o"g} gbw% o gmmﬂj
s Q@g(wl = (K n)

Method 2: Pairwise independent hash functions

,0@3V\4—d17
Fact. Small families of pairwise independe thash functlons exist. y
: PenceL ag R et
Proof of derandomization claim. o 1@ (v/ Independent of previous choices

if X, =1thenaddvto A
else add v to B

return (A, B)

ISANE IS

Fleam) = 2 (BfwehveB]

QGE
entne) T HLeeB ncA))

= 2 (R[A=, %r)=c) v o)
ef‘(ul"") ’\/’—"’_“,) L . . L (

“ T 9 %

2

Ge W eney helW — ORI - qh) e L Judt <(BB)

o eadh, Olm) e

—
—

(Important) Fact. If E[X] exists, then Pr[X= E[X]] > 0.

}}:EX /\

Xyt A)] fosua =8
M X< 7 A gt(c/’; o7
: Hﬂ)kj y ﬂﬂ)ﬁ/}a EU ok

Proof.

Method 2: Brute force via pairwise independence

Theorem. There exists a deterministic Y2-approximation algorithm
for Max-CUT which runs in time O(m(m+n)).

Method 3: The Method of Conditional Expectations

Idea: sequentially do the greedy choice. Sometimes it works!

Method 3: The Method of Conditional Expectations

Idea: sequentially do the greedy choice. Sometimes it works!

1: (A, B) < (@,@) A
2: forall v € V do

3 Xy < Bern(1/2) > Independent of previous choices A
4: if X, =1thenaddvto A
5
6

else add v to B
. return (A, B)

Details.

2 < E(1B))
< Elc(AB) le
é HC(A,%) Xllx?:,)

'4

C E(cAR)] X, =, Ka) = c(AB)

o ST

Method 3: The Method of Conditional Expectations

Theorem. There exists a deterministi@pproximation algorithm

for Max-CUT which runs in time O(mn):.
| A Jo bthr

0. 378 -afpmeo-

Derandomisation: summary

- PRNG

- Brute-Force

- Pairwise (k-wise) independence

- Method of Conditional Expectations

(there is more!)

Bonus: The Probabilistic Method

"We can prove things exist without knowing how to build them."

(also can be derandomised, sometimes)

	Slide 1
	Slide 2: COMPx270: Randomised and Advanced Algorithms Lecture 4: Derandomisation
	Slide 3: Connect with Student Wellbeing
	Slide 4: An announcement (or three)
	Slide 5: A question
	Slide 6: A question
	Slide 7: An answer?
	Slide 8: Let's not stop here though
	Slide 9: Method 1: PRNG 🎲
	Slide 10: Method 1: PRNG 🎲
	Slide 11: Method 2: Brute force 💪
	Slide 12: Method 2: Brute force 💪
	Slide 13
	Slide 14: Method 2: Brute force 💪
	Slide 15: Method 2: Brute force 💪
	Slide 16: Method 2: Brute force 💪
	Slide 17: Method 2: Brute force 💪
	Slide 18: Method 2: Brute force 💪
	Slide 19: Method 2: Brute force 💪 via pairwise independence
	Slide 20: Method 2: Brute force 💪 via pairwise independence
	Slide 21: Method 2: Brute force 💪 via pairwise independence
	Slide 22: Method 2: Brute force 💪 via pairwise independence
	Slide 23: Method 2: Brute force 💪 via pairwise independence
	Slide 24: Method 2: Brute force 💪 via pairwise independence
	Slide 25: Method 2: Pairwise independent hash functions
	Slide 26: Method 2: Pairwise independent hash functions
	Slide 27: Method 2: Pairwise independent hash functions
	Slide 28: Method 2: Pairwise independent hash functions
	Slide 29
	Slide 30: Method 2: Brute force 💪 via pairwise independence
	Slide 31: Method 3: The Method of Conditional Expectations
	Slide 32: Method 3: The Method of Conditional Expectations
	Slide 33
	Slide 34: Method 3: The Method of Conditional Expectations
	Slide 35: Derandomisation: summary
	Slide 36: Bonus: The Probabilistic Method

