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COMPx270: Randomised and
Advanced Algorithms




Connect with Student Wellbeing

Everything you need to know about student life, wellbeing and
support can be found on the landing page:

Students can self-refer via the webpage by clicking “Connect
with us”:

Connect with us

Complete our registration form and a clinician

will call you to discuss your support needs.

%

Phone: 02 72551562 / 8627 8433
Address: Level 5, Jane Foss Russell Building, G02



An announcement (or three)

- HW1, Problem 5: B should be 23 (updated assignment tonight)
- Office Hours (OH) this Friday, 3:30-5pm, J12 302 + Zoom

- Simple extensions (you have them by default!)



A guestion

You have a randomised algorithm A which runs in time T(n) and

solves task X (say, decision problem) with probability .99. Is there a
deterministic algorithm B which solves X and runs in time...

* O(T(n))

* poly(T(n))

* exp(T(n))

* No/we don't know
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An answer?

That's complicated. This is what derandomization asks, and there
Is a lot of work on this: one of the major unsolved question in
theoretical computer science.
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Let's not stop here though

We know how to derandomize some algorithms, and there are
some general techniques.



Method 1: PRNG &«

The goal is to reduce the amount of randomness required, by
generating a lot of "good enough" pseudorandom bits: good enough

to fool the algorithm.
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Method 1: PRNG &+

Why is that useful?
* Random bits don't grow on trees!
* Derandomisation (method 2)

Why is this bad?
* Conditional (under assumptions)



Method 2: Brute force

If the algorithm uses a small number of random seeds, check'em
all.



Method 2: Brute force

If the algorithm uses a small number of random seeds, check'em
all.

Require: Input x

i forall r € {0,1}" do . /]f]-
2y« Ax;r) > Run A on x with randomness r <

3> if V(x,y) =1 then > Verify if y is a good solution <— /l\/
4 return y > If so, we are done
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Detalils.



Method 2: Brute force -

What if verifying is hard?
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Method 2: Brute force -

What if verifying is hard?/~7

Majority vote!
Median trick!
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Method 2: Brute force

What if the algorithm does not use a small number of random bits?



Method 2: Brute force

What if the algorithm does not use a small number of random bits?

Well, these PRNGs can come in handy...



Method 2: Brute force

What if the algorithm does not use a small number of random bits?

Or (sometimes) we can reduce the randomness by carefully looking
at the proof.



Method 2: Brute force = via pairwise independence

Derandomizing Max-Cut

Max-CuT: Given an (undirected) graph G = (V,E) onn
vertices and 77 edges, output a cut (A, B) (partition of V') max-
imising the number c(A, B) of edges between A and B.

(It's NP-Hard)



Method 2: Brute force = via pairwise independence \
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Derandomizing Max-Cut ! @

Max-CuT: Given an (undirected) graph G = (V,E) onn
vertices and 77 edges, output a cut (A, B) (partition of V') max-
imising the number c(A, B) of edges between A and B.

But we can get a V2-approximation!



Method 2: Brute force via pairwise independence

1: (A, B) < (@,@)
2: forall v € V do

3 Xy < Bern(1/2) > Independent of previous choices
4: if X, =1thenaddvto A

5 else add v to B

6

. return (A, B)




Method 2: Brute force = via pairwise independence A

Theorem.
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Method 2: Brute force via pairwise independence

Theorem. This can be derandomised.



Method 2: Brute force = via pairwise independence

Theorem. This can be derandomised.

1: (A, B) — (@,@)
2: forall v € V do

/3:_ —~ Xy < Bern(1/2) > Independent of previous cho;ces
%u; B+ )& if X, =1thenaddvto A < ) W
5: else add v to B W&A N X’v)% w\&fk

6: return (A, B)




A
Method 2: Pairwise independent hash functions I%’qu’{:/%l

/

Definition 22.1. A family of functions 7 C {h: X — )} isa
family of pairwise independent hash functions, or a strongly universal
hash family, if, for every x,x’ € X with x # x’ and every y, v’ € ),
1
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where the probability is over the uniformly random choice of /1 €
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Method 2: Pairwise independent hash functions

Fact. Small families of pairwise independent hash functions exist.



Method 2: Pairwise independent hash functions

Fact. Small families of pairwise independent hash functions exist.
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Method 2: Pairwise independent hash functions

,0@3V\4—d17
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Proof of derandomization claim. o 1@ (v/ Independent of previous choices

if X, =1thenaddvto A
else add v to B

return (A, B)
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(Important) Fact. If E[X] exists, then Pr[X= E[X] ] > 0.
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Method 2: Brute force via pairwise independence

Theorem. There exists a deterministic Y2-approximation algorithm
for Max-CUT which runs in time O(m(m+n)).



Method 3: The Method of Conditional Expectations

Idea: sequentially do the greedy choice. Sometimes it works!



Method 3: The Method of Conditional Expectations

Idea: sequentially do the greedy choice. Sometimes it works!

1: (A, B) < (@,@) A
2: forall v € V do

3 Xy < Bern(1/2) > Independent of previous choices A
4: if X, =1thenaddvto A
5
6

else add v to B
. return (A, B)




Details.
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Method 3: The Method of Conditional Expectations

Theorem. There exists a deterministi@pproximation algorithm

for Max-CUT which runs in time O(mn):.
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Derandomisation: summary

- PRNG

- Brute-Force

- Pairwise (k-wise) independence

-  Method of Conditional Expectations

(there is more!)



Bonus: The Probabilistic Method

"We can prove things exist without knowing how to build them."

(also can be derandomised, sometimes)



	Slide 1
	Slide 2: COMPx270: Randomised and Advanced Algorithms Lecture 4:  Derandomisation
	Slide 3: Connect with Student Wellbeing 
	Slide 4: An announcement (or three)
	Slide 5: A question
	Slide 6: A question
	Slide 7: An answer? 
	Slide 8: Let's not stop here though
	Slide 9: Method 1: PRNG 🎲
	Slide 10: Method 1: PRNG 🎲
	Slide 11: Method 2: Brute force 💪
	Slide 12: Method 2: Brute force 💪
	Slide 13
	Slide 14: Method 2: Brute force 💪
	Slide 15: Method 2: Brute force 💪
	Slide 16: Method 2: Brute force 💪
	Slide 17: Method 2: Brute force 💪
	Slide 18: Method 2: Brute force 💪
	Slide 19: Method 2: Brute force 💪 via pairwise independence
	Slide 20: Method 2: Brute force 💪 via pairwise independence
	Slide 21: Method 2: Brute force 💪 via pairwise independence
	Slide 22: Method 2: Brute force 💪 via pairwise independence
	Slide 23: Method 2: Brute force 💪 via pairwise independence
	Slide 24: Method 2: Brute force 💪 via pairwise independence
	Slide 25: Method 2: Pairwise independent hash functions
	Slide 26: Method 2: Pairwise independent hash functions
	Slide 27: Method 2: Pairwise independent hash functions
	Slide 28: Method 2: Pairwise independent hash functions
	Slide 29
	Slide 30: Method 2: Brute force 💪 via pairwise independence
	Slide 31: Method 3: The Method of Conditional Expectations
	Slide 32: Method 3: The Method of Conditional Expectations
	Slide 33
	Slide 34: Method 3: The Method of Conditional Expectations
	Slide 35: Derandomisation: summary
	Slide 36: Bonus: The Probabilistic Method

