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A question

You have a randomised algorithm A which runs in time T(n) and 
solves task X (say, decision problem) with probability .99. Is there a 
deterministic algorithm B which solves X and runs in time...
• O(T(n))
• poly(T(n))
• exp(T(n))
• No/we don't know
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An answer? 

That's complicated. This is what derandomization asks, and there 
is a lot of work on this: one of the major unsolved question in 
theoretical computer science.

P v. BPP



Let's not stop here though

We know how to derandomize some algorithms, and there are 
some general techniques.



Method 1: PRNG

The goal is to reduce the amount of randomness required, by 
generating a lot of "good enough" pseudorandom bits: good enough 
to fool the algorithm.



Method 1: PRNG

Why is that useful? 
• Random bits don't grow on trees!
• Derandomisation (method 2)

Why is this bad?
• Conditional (under assumptions)



Method 2: Brute force 

If the algorithm uses a small number of random seeds, check 'em
all.



Method 2: Brute force 

If the algorithm uses a small number of random seeds, check 'em
all.



Details.



Method 2: Brute force 

What if verifying is hard?



Method 2: Brute force 

What if verifying is hard?

• Majority vote!
• Median trick!



Method 2: Brute force 

What if the algorithm does not use a small number of random bits?



Method 2: Brute force 

What if the algorithm does not use a small number of random bits?

Well, these PRNGs can come in handy...



Method 2: Brute force 

What if the algorithm does not use a small number of random bits?

Or (sometimes) we can reduce the randomness by carefully looking 
at the proof.



Method 2: Brute force via pairwise independence

Derandomizing Max-Cut

(It's NP-Hard)



Method 2: Brute force via pairwise independence

Derandomizing Max-Cut

But we can get a ½-approximation!



Method 2: Brute force via pairwise independence



Theorem. 

Proof.

Method 2: Brute force via pairwise independence



Theorem. This can be derandomised.

Method 2: Brute force via pairwise independence



Theorem. This can be derandomised.

Method 2: Brute force via pairwise independence



Method 2: Pairwise independent hash functions



Fact. Small families of pairwise independent hash functions exist.
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Fact. Small families of pairwise independent hash functions exist.

Method 2: Pairwise independent hash functions



Fact. Small families of pairwise independent hash functions exist.

Method 2: Pairwise independent hash functions

Proof of derandomization claim.



(Important) Fact. If 𝔼[X] exists, then Pr[X ≥ 𝔼[X] ] > 0.

Proof.



Theorem. There exists a deterministic ½-approximation algorithm 
for Max-CUT which runs in time O(m(m+n)).

Method 2: Brute force  via pairwise independence



Idea: sequentially do the greedy choice. Sometimes it works!

Method 3: The Method of Conditional Expectations



Idea: sequentially do the greedy choice. Sometimes it works!

Method 3: The Method of Conditional Expectations



Details.



Theorem. There exists a deterministic ½-approximation algorithm 
for Max-CUT which runs in time O(mn).

Method 3: The Method of Conditional Expectations



- PRNG

- Brute-Force

- Pairwise (k-wise) independence

- Method of Conditional Expectations

(there is more!)

Derandomisation: summary



"We can prove things exist without knowing how to build them."

(also can be derandomised, sometimes)

Bonus: The Probabilistic Method
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