
COMMONWEALTH OF AUSTRALIA

Copyright Regulations 1969

WARNING

 This material has been reproduced and communicated to you by or on
behalf of the University of Sydney pursuant to Part VB of the Copyright Act
1968 (the Act). The material in this communication may be subject to
copyright under the Act. Any further copying or communication of this
material by you may be the subject of copyright protection under the Act.

Do not remove this notice.

COMPx270: Randomised and
Advanced Algorithms
Lecture 4: Derandomisation

Clément Canonne

School of Computer Science

A question

You have a randomised algorithm A which runs in time T(n) and
solves task X (say, decision problem) with probability .99. Is there a
deterministic algorithm B which solves X and runs in time...
• O(T(n))
• poly(T(n))
• exp(T(n))
• No/we don't know

A question

You have a randomised algorithm A which runs in time T(n) and
solves task X (say, decision problem) with probability .99. Is there a
deterministic algorithm B which solves X and runs in time...
• O(T(n)) ?
• poly(T(n)) ?
• exp(T(n))
• No/we don't know

An answer?

That's complicated. This is what derandomization asks, and there
is a lot of work on this: one of the major unsolved question in
theoretical computer science.

P v. BPP

Let's not stop here though

We know how to derandomize some algorithms, and there are
some general techniques.

Method 1: PRNG

The goal is to reduce the amount of randomness required, by
generating a lot of "good enough" pseudorandom bits: good enough
to fool the algorithm.

Method 1: PRNG

Why is that useful?
• Random bits don't grow on trees!
• Derandomisation (method 2)

Why is this bad?
• Conditional (under assumptions)

Method 2: Brute force

If the algorithm uses a small number of random seeds, check 'em
all.

Method 2: Brute force

If the algorithm uses a small number of random seeds, check 'em
all.

Details.

Method 2: Brute force

What if verifying is hard?

Method 2: Brute force

What if verifying is hard?

• Majority vote!
• Median trick!

Method 2: Brute force

What if the algorithm does not use a small number of random bits?

Method 2: Brute force

What if the algorithm does not use a small number of random bits?

Well, these PRNGs can come in handy...

Method 2: Brute force

What if the algorithm does not use a small number of random bits?

Or (sometimes) we can reduce the randomness by carefully looking
at the proof.

Method 2: Brute force via pairwise independence

Derandomizing Max-Cut

(It's NP-Hard)

Method 2: Brute force via pairwise independence

Derandomizing Max-Cut

But we can get a ½-approximation!

Method 2: Brute force via pairwise independence

Theorem.

Proof.

Method 2: Brute force via pairwise independence

Theorem. This can be derandomised.

Method 2: Brute force via pairwise independence

Theorem. This can be derandomised.

Method 2: Brute force via pairwise independence

Method 2: Pairwise independent hash functions

Fact. Small families of pairwise independent hash functions exist.

Method 2: Pairwise independent hash functions

Fact. Small families of pairwise independent hash functions exist.

Method 2: Pairwise independent hash functions

Fact. Small families of pairwise independent hash functions exist.

Method 2: Pairwise independent hash functions

Proof of derandomization claim.

(Important) Fact. If 𝔼[X] exists, then Pr[X ≥ 𝔼[X]] > 0.

Proof.

Theorem. There exists a deterministic ½-approximation algorithm
for Max-CUT which runs in time O(m(m+n)).

Method 2: Brute force via pairwise independence

Idea: sequentially do the greedy choice. Sometimes it works!

Method 3: The Method of Conditional Expectations

Idea: sequentially do the greedy choice. Sometimes it works!

Method 3: The Method of Conditional Expectations

Details.

Theorem. There exists a deterministic ½-approximation algorithm
for Max-CUT which runs in time O(mn).

Method 3: The Method of Conditional Expectations

- PRNG

- Brute-Force

- Pairwise (k-wise) independence

- Method of Conditional Expectations

(there is more!)

Derandomisation: summary

"We can prove things exist without knowing how to build them."

(also can be derandomised, sometimes)

Bonus: The Probabilistic Method

	Slide 1
	Slide 2: COMPx270: Randomised and Advanced Algorithms Lecture 4: Derandomisation
	Slide 3: A question
	Slide 4: A question
	Slide 5: An answer?
	Slide 6: Let's not stop here though
	Slide 7: Method 1: PRNG 🎲
	Slide 8: Method 1: PRNG 🎲
	Slide 9: Method 2: Brute force 💪
	Slide 10: Method 2: Brute force 💪
	Slide 11
	Slide 12: Method 2: Brute force 💪
	Slide 13: Method 2: Brute force 💪
	Slide 14: Method 2: Brute force 💪
	Slide 15: Method 2: Brute force 💪
	Slide 16: Method 2: Brute force 💪
	Slide 17: Method 2: Brute force 💪 via pairwise independence
	Slide 18: Method 2: Brute force 💪 via pairwise independence
	Slide 19: Method 2: Brute force 💪 via pairwise independence
	Slide 20: Method 2: Brute force 💪 via pairwise independence
	Slide 21: Method 2: Brute force 💪 via pairwise independence
	Slide 22: Method 2: Brute force 💪 via pairwise independence
	Slide 23: Method 2: Pairwise independent hash functions
	Slide 24: Method 2: Pairwise independent hash functions
	Slide 25: Method 2: Pairwise independent hash functions
	Slide 26: Method 2: Pairwise independent hash functions
	Slide 27
	Slide 28: Method 2: Brute force 💪 via pairwise independence
	Slide 29: Method 3: The Method of Conditional Expectations
	Slide 30: Method 3: The Method of Conditional Expectations
	Slide 31
	Slide 32: Method 3: The Method of Conditional Expectations
	Slide 33: Derandomisation: summary
	Slide 34: Bonus: The Probabilistic Method

