
COMMONWEALTH OF AUSTRALIA

Copyright Regulations 1969

WARNING

 This material has been reproduced and communicated to you by or on
behalf of the University of Sydney pursuant to Part VB of the Copyright Act
1968 (the Act). The material in this communication may be subject to
copyright under the Act. Any further copying or communication of this
material by you may be the subject of copyright protection under the Act.

Do not remove this notice.

COMPx270: Randomised and
Advanced Algorithms
Lecture 2: Concentration bounds,
and tricks

Clément Canonne

School of Computer Science

A question

You're waiting for the bus, but don't have the schedule (or a
smartphone). The person next to you tells you that the bus comes
on average every 5 minutes.
If you decide to wait up to 20 minutes before giving up and walking,
what are the chances you will get a bus?

A question

You're given a Las Vegas algorithm A, but don't know anything about
the details. The algo designer tells you that its expected running
time is at most T.
If you decide to wait up to 4T steps before stopping A and returning
" ", what are the chances the algorithm will have terminated?

Why do we care?

Often we will obtain or give guarantees about expectations:
• Expected running time of an algorithm
• Expected quality of the output
• Expected amount of resources used

This is useful, but often not enough.

Why do we care?

Probability mass functions of two random variables with the same
expectation, but very different behaviour

Why do we care?

Often we will obtain or give guarantees about expectations:
• Expected running time of an algorithm
• Expected quality of the output
• Expected amount of resources used

We also want to argue about concentration: "usually not too far
from the expectation"

Some concentration tools (among many)

Some concentration tools: Markov's inequality

Suppose you only know two things about a random variable X:
1. X ≥ 0
2. 𝔼[X] (or an upper bound on it)

Then, for every t > 0,
Pr[X ≥ t] ≤ 𝔼[X]/t

This is Markov's Inequality: "you can't be 10 times your expectation
more than 10 percent of the time." (if you're non-negative)

Some concentration tools: Markov's inequality

Proof.

Application: from Las Vegas to Monte Carlo algorithms

Suppose I have a Las Vegas algorithm A for a task with expected
running time (at most) T. Then I have a Monte Carlo algorithm A' with
worst-case running time O(T) and failure probability 1%.

Application: from Las Vegas to Monte Carlo algorithms

Suppose I have a Las Vegas algorithm A for a task with expected
running time (at most) T. Then I have a Monte Carlo algorithm A' with
worst-case running time O(T) and failure probability 1%.

Idea: run A for up to 100T steps, abort and output anything if you go
over.

Application: from Las Vegas to Monte Carlo algorithms

Suppose I have a Las Vegas algorithm A for a task with expected
running time (at most) T. Then I have a Monte Carlo algorithm A' with
worst-case running time O(T) and failure probability 1%.

Idea: run A for up to 100T steps, abort and output anything if you go
over.

Only issue: to get error probability δ, running time becomes O(T/δ).

Some concentration tools: Chebyshev's inequality

Suppose you know two things about a random variable X:
1. 𝔼[X]
2. Var[X] (or an upper bound on it)

Then, for every t > 0,
Pr[|X-𝔼[X]| ≥ t] ≤ Var[X]/t²

This is Chebyshev's Inequality: "you can't deviate from your
expectation by more than 10 standard deviations more than 1
percent of the time."

Some concentration tools: Chebyshev's inequality

Proof.

Application: from Las Vegas to Monte Carlo algorithms

Suppose I have a Las Vegas algorithm A for a task with expected
running time (at most) T and variance σ². Then I have a Monte Carlo
algorithm A' with worst-case running time O(T) and failure
probability 1%.

Idea: run A for up to T+10σ steps, abort and output anything if you
go over.

Better? To get error probability δ, running time becomes T+O(σ/√δ).

Some concentration tools: Chernoff/Hoeffding bounds

Suppose you know two things about a random variable X:
1. It can be written as the sum of many independent r.v.s X₁,..,Xₙ
2. Each Xₜ is bounded in [0,1]

Then, for every γ in (0,1],
Pr[|X - 𝔼[X]| > γ𝔼[X]] ≤ 2 exp(-γ²𝔼[X]/3)

This is the Chernoff Bound: "you can't deviate from your expectation
by more than a relative amount except with exponentially small
probability."

Some concentration tools: Chernoff/Hoeffding bounds

Suppose you know two things about a random variable X:
1. It can be written as the sum of many independent r.v.s X₁,..,Xₙ
2. Each Xₜ is bounded in [0,1]

Then, for every γ in (0,1],
Pr[|X - 𝔼[X]| > γn] ≤ 2 exp(-2γ²n)

This is the Hoeffding Bound: "you can't deviate from your
expectation by more than an additive amount except with
exponentially small probability."

Some concentration tools: the Chernoff bound

Proof.

Tutorial

(Proof by Markov)

Application: from Las Vegas to Monte Carlo algorithms

Suppose I have a Las Vegas algorithm A for a task with expected
running time (at most) T. Then I have a Monte Carlo algorithm A' with
worst-case running time O(T) and failure probability δ.

Idea: start with the Markov idea: run A for up to 2T steps, abort if
you go over. Now, repeat that k=O(log(1/δ)) times.

Much better! To get error probability δ, running time becomes O(T
log(1/δ)).

 (Actually guarantees that many of the k runs will
be successful, not just one.)

Some concentration tools (among many)

- Markov: minimal assumptions, often weaker, one-sided, X ≥ 0
- Chebyshev: needs to bound the variance, often suffices, pairwise

independence is enough [we'll get back to that]
- Chernoff: stronger assumptions, much stronger guarantees for

large deviations. Requires full independence.
- Hoeffding: same, but slightly different guarantees

There are many others + variations, but this is a good toolbox
to design and reason about randomised algorithms.

One last tool

If E₁, E₂, …, Eₖ are events, then

Pr[E₁ or E₂ or …. or Eₖ] ≤ Pr[E₁] + Pr[E₂] + … + Pr[Eₖ]

This is the Union Bound: works even if the events have weird,
intricate dependencies.

One last tool

If E₁, E₂, …, Eₖ are events, then

Pr[E₁ or E₂ or …. or Eₖ] ≤ Pr[E₁] + Pr[E₂] + … + Pr[Eₖ]

This is the Union Bound: works even if the events have weird,
intricate dependencies.

Corollary:
Pr[none of E₁, E₂, …, Eₖ] ≥ 1 - (Pr[E₁] + Pr[E₂] + … + Pr[Eₖ])

From Monte Carlo to Las Vegas algorithms

We have seen how to convert a Las Vegas to a Monte Carlo
algorithm.

Can we do the opposite?

From Monte Carlo to Las Vegas algorithms

We have seen how to convert a Las Vegas to a Monte Carlo
algorithm.

Can we do the opposite?

(No*)

From Monte Carlo to Las Vegas algorithms

We have seen how to convert a Las Vegas to a Monte Carlo
algorithm.

Can we do the opposite?

Sometimes. E.g., if we can efficiently check the output is good.

From Monte Carlo to Las Vegas algorithms

Theorem. Suppose I have a Monte Carlo algorithm A with worst-
case running time T and failure probability p < 1, with the following
extra guarantee: we can check if A's output is correct in time O(1).
Then there is a Las Vegas algorithm A' for the same task with
expected running time O(T).

From Monte Carlo to Las Vegas algorithms

Theorem. Suppose I have a Monte Carlo algorithm A with worst-
case running time T and failure probability p < 1, with the following
extra guarantee: we can check if A's output is correct in time O(1).
Then there is a Las Vegas algorithm A' for the same task with
expected running time O(T).

do

 run A on input x, let y be its output

until output y is good

From Monte Carlo to Las Vegas algorithms

Proof.

do

 run A on input x, let y be its output

until output y is good

Recap so far

We have seen how to convert Las Vegas to Monte Carlo, and
(sometimes) the other way around.

We have seen some tools (concentration inequalities and union
bound) that surely will prove useful. ("Chekhov's algorithmic gun")

But Monte Carlo algorithms were only required to succeed with
some lame probability, like 2/3. What if we want 99.9999999%?

From Monte Carlo to (better) Monte Carlo

Theorem. Suppose I have a Monte Carlo algorithm A for a decision
problem, with worst-case running time T and failure probability 1/3.
Then there is a Monte Carlo algorithm A' for the same task with
worst-case running time O(T log(1/δ)) and failure probability δ.

for 1 ≤ t ≤ k

 run A on input x, let yₜ in {0,1} be its output

return majority(y₁,...,yₖ)

From Monte Carlo to (better) Monte Carlo

Proof.

for 1 ≤ t ≤ k

 run A on input x, let yₜ in {0,1} be its output

return majority(y₁,...,yₖ)

From Monte Carlo to (better) Monte Carlo

This was for decision problems. The majority trick can be
generalised, for instance,* to real-valued outputs instead of binary:
this is the median trick, where you amplify success probability by
taking the median of the k outputs.

You'll see the details in the tutorial. Think about
why "median" and not "average"!

*Under some conditions

Now, an algorithm

Problem: Given an unsorted array A of n distinct* integers, find the
median.

Now, an algorithm

Problem: Given an unsorted array A of n distinct* integers, find the
median.

Solution: Quick Selection (Median of Medians algorithm).

Beautiful* divide-and-conquer deterministic algorithm running in
time O(n).

Now, an algorithm

Problem: Given an unsorted array A of n distinct* integers, find the
median.

Solution: Quick Selection (Median of Medians algorithm).

Beautiful* divide-and-conquer deterministic algorithm running in
time O(n).

*In theory

Now, a randomised algorithm

Problem: Given an unsorted array A of n distinct* integers, find the
median.

Solution: Randomised Median

Beautiful randomised Monte Carlo algorithm running in time O(n).

Now, a randomised algorithm

Problem: Given an unsorted array A of n distinct* integers, find the
median.

Solution: Randomised Median

Beautiful randomised Monte Carlo algorithm running in time O(n).

Introduces the idea of "sampling as a guide"

Randomised Median

Randomised Median

Randomised Median

Running time:
O(m log m) + O(n) + O((n/√m) log (n/√m))

Choose m to have n/√m = m (balance first and last terms), get O(n)

Randomised Median

Correctness?

Only incorrect when it outputs fail. 3 possible
"bad events":
1. Too many elements (in A) smaller than b
2. Too many elements (in A) bigger than b
3. Too many elements in C

Randomised Median

Correctness?
By the union bound, can bound separately
the probability of these 3 bad events.
"By symmetry" the first two events can be
bounded the same way.

Randomised Median: why should it work?

Proof.

Proof.

Proof.

Randomised Median: summary

Problem: Given an unsorted array A of n distinct* integers, find the
median.

Solution: Randomised Median is a randomised Monte Carlo
algorithm running in time O(n).

+ Probability amplification

This lecture: summary

• Concentration inequalities: Markov (first-moment method),
Chebyshev (second-moment method), Chernoff/Hoeffding

• Union bound: your new best friend (with linearity of expectation)

• Probability amplification: majority vote, median trick

• Sampling as a guide or "sketch"

	Slide 1
	Slide 2: COMPx270: Randomised and Advanced Algorithms Lecture 2: Concentration bounds, and tricks
	Slide 3: A question 🚌
	Slide 4: A question 🎰
	Slide 5: Why do we care?
	Slide 6: Why do we care?
	Slide 7: Why do we care?
	Slide 8: Some concentration tools (among many) 🧰
	Slide 9: Some concentration tools: Markov's inequality
	Slide 10: Some concentration tools: Markov's inequality
	Slide 11: Application: from Las Vegas to Monte Carlo algorithms
	Slide 12: Application: from Las Vegas to Monte Carlo algorithms
	Slide 13: Application: from Las Vegas to Monte Carlo algorithms
	Slide 14: Some concentration tools: Chebyshev's inequality
	Slide 15: Some concentration tools: Chebyshev's inequality
	Slide 16: Application: from Las Vegas to Monte Carlo algorithms
	Slide 17: Some concentration tools: Chernoff/Hoeffding bounds
	Slide 18: Some concentration tools: Chernoff/Hoeffding bounds
	Slide 19: Some concentration tools: the Chernoff bound
	Slide 20: Application: from Las Vegas to Monte Carlo algorithms
	Slide 21: Some concentration tools (among many) 🧰
	Slide 22: One last tool 🧰
	Slide 23: One last tool 🧰
	Slide 24: From Monte Carlo to Las Vegas algorithms
	Slide 25: From Monte Carlo to Las Vegas algorithms
	Slide 26: From Monte Carlo to Las Vegas algorithms
	Slide 27: From Monte Carlo to Las Vegas algorithms
	Slide 28: From Monte Carlo to Las Vegas algorithms
	Slide 29: From Monte Carlo to Las Vegas algorithms
	Slide 30: Recap so far
	Slide 31: From Monte Carlo to (better) Monte Carlo
	Slide 32: From Monte Carlo to (better) Monte Carlo
	Slide 33: From Monte Carlo to (better) Monte Carlo
	Slide 34
	Slide 35: Now, an algorithm
	Slide 36: Now, an algorithm
	Slide 37: Now, an algorithm
	Slide 38: Now, a randomised algorithm
	Slide 39: Now, a randomised algorithm
	Slide 40: Randomised Median
	Slide 41: Randomised Median
	Slide 42: Randomised Median
	Slide 43: Randomised Median
	Slide 44: Randomised Median
	Slide 45: Randomised Median: why should it work?
	Slide 46
	Slide 47
	Slide 48
	Slide 49: Randomised Median: summary
	Slide 50: This lecture: summary

