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A question 

You're waiting for the bus, but don't have the schedule (or a 
smartphone). The person next to you tells you that the bus comes 
on average every 5 minutes.
If you decide to wait up to 20 minutes before giving up and walking, 
what are the chances you will get a bus?



A question 

You're given a Las Vegas algorithm A, but don't know anything about 
the details. The algo designer tells you that its expected running 
time is at most T.
If you decide to wait up to 4T steps before stopping A and returning 
" ", what are the chances the algorithm will have terminated?



Why do we care?

Often we will obtain or give guarantees about expectations:
• Expected running time of an algorithm
• Expected quality of the output
• Expected amount of resources used

This is useful, but often not enough. 



Why do we care?

Probability mass functions of two random variables with the same 
expectation, but very different behaviour



Why do we care?

Often we will obtain or give guarantees about expectations:
• Expected running time of an algorithm
• Expected quality of the output
• Expected amount of resources used

We also want to argue about concentration: "usually not too far 
from the expectation" 



Some concentration tools (among many) 



Some concentration tools: Markov's inequality

Suppose you only know two things about a random variable X:
1. X ≥ 0
2. 𝔼[X]  (or an upper bound on it)

Then, for every t > 0, 
Pr[ X ≥ t ] ≤ 𝔼[X]/t 

This is Markov's Inequality: "you can't be 10 times your expectation 
more than 10 percent of the time." (if you're non-negative)



Some concentration tools: Markov's inequality

Proof.



Application: from Las Vegas to Monte Carlo algorithms

Suppose I have a Las Vegas algorithm A for a task with expected 
running time (at most) T. Then I have a Monte Carlo algorithm A' with 
worst-case running time O(T) and failure probability 1%.
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Suppose I have a Las Vegas algorithm A for a task with expected 
running time (at most) T. Then I have a Monte Carlo algorithm A' with 
worst-case running time O(T) and failure probability 1%.

Idea: run A for up to 100T steps, abort and output anything if you go 
over.



Application: from Las Vegas to Monte Carlo algorithms

Suppose I have a Las Vegas algorithm A for a task with expected 
running time (at most) T. Then I have a Monte Carlo algorithm A' with 
worst-case running time O(T) and failure probability 1%.

Idea: run A for up to 100T steps, abort and output anything if you go 
over.

Only issue: to get error probability δ, running time becomes O(T/δ).



Some concentration tools: Chebyshev's inequality

Suppose you know two things about a random variable X:
1. 𝔼[X]
2. Var[X]  (or an upper bound on it)

Then, for every t > 0, 
Pr[ |X-𝔼[X]| ≥ t ] ≤ Var[X]/t²

This is Chebyshev's Inequality: "you can't deviate from your 
expectation by more than 10 standard deviations more than 1 
percent of the time."



Some concentration tools: Chebyshev's inequality

Proof.



Application: from Las Vegas to Monte Carlo algorithms

Suppose I have a Las Vegas algorithm A for a task with expected 
running time (at most) T and variance σ². Then I have a Monte Carlo 
algorithm A' with worst-case running time O(T) and failure 
probability 1%.

Idea: run A for up to T+10σ steps, abort and output anything if you 
go over.

Better? To get error probability δ, running time becomes T+O(σ/√δ).



Some concentration tools: Chernoff/Hoeffding bounds

Suppose you know two things about a random variable X:
1. It can be written as the sum of many independent r.v.s X₁,..,Xₙ
2. Each Xₜ is bounded in [0,1]

Then, for every γ in (0,1], 
Pr[ |X - 𝔼[X]| > γ𝔼[X] ] ≤ 2 exp(-γ²𝔼[X]/3)

This is the Chernoff Bound: "you can't deviate from your expectation 
by more than a relative amount except with exponentially small 
probability."



Some concentration tools: Chernoff/Hoeffding bounds

Suppose you know two things about a random variable X:
1. It can be written as the sum of many independent r.v.s X₁,..,Xₙ
2. Each Xₜ is bounded in [0,1]

Then, for every γ in (0,1], 
Pr[ |X - 𝔼[X]| > γn ] ≤ 2 exp(-2γ²n)

This is the Hoeffding Bound: "you can't deviate from your 
expectation by more than an additive amount except with 
exponentially small probability."



Some concentration tools: the Chernoff bound

Proof. 

Tutorial

(Proof by Markov)



Application: from Las Vegas to Monte Carlo algorithms

Suppose I have a Las Vegas algorithm A for a task with expected 
running time (at most) T. Then I have a Monte Carlo algorithm A' with 
worst-case running time O(T) and failure probability δ.

Idea: start with the Markov idea: run A for up to 2T steps, abort if 
you go over. Now, repeat that k=O(log(1/δ)) times.

Much better! To get error probability δ, running time becomes O(T 
log(1/δ)). 

 (Actually guarantees that many of the k runs will 
be successful, not just one.)



Some concentration tools (among many) 

- Markov: minimal assumptions, often weaker, one-sided, X ≥ 0
- Chebyshev: needs to bound the variance, often suffices, pairwise 

independence is enough [we'll get back to that]
- Chernoff: stronger assumptions, much stronger guarantees for 

large deviations. Requires full independence.
- Hoeffding: same, but slightly different guarantees

There are many others + variations, but this is a good toolbox 
to design and reason about randomised algorithms.



One last tool 

If E₁, E₂, …, Eₖ are events, then

Pr[ E₁ or E₂ or …. or Eₖ ] ≤ Pr[E₁] + Pr[E₂] + … + Pr[Eₖ]

This is the Union Bound: works even if the events have weird, 
intricate dependencies.



One last tool 

If E₁, E₂, …, Eₖ are events, then

Pr[ E₁ or E₂ or …. or Eₖ ] ≤ Pr[E₁] + Pr[E₂] + … + Pr[Eₖ]

This is the Union Bound: works even if the events have weird, 
intricate dependencies.

Corollary:
Pr[ none of E₁, E₂, …, Eₖ ] ≥ 1 - (Pr[E₁] + Pr[E₂] + … + Pr[Eₖ])



From Monte Carlo to Las Vegas algorithms

We have seen how to convert a Las Vegas to a Monte Carlo 
algorithm.

Can we do the opposite?



From Monte Carlo to Las Vegas algorithms

We have seen how to convert a Las Vegas to a Monte Carlo 
algorithm.

Can we do the opposite?

(No*)



From Monte Carlo to Las Vegas algorithms

We have seen how to convert a Las Vegas to a Monte Carlo 
algorithm.

Can we do the opposite?

Sometimes. E.g., if we can efficiently check the output is good.



From Monte Carlo to Las Vegas algorithms

Theorem. Suppose I have a Monte Carlo algorithm A with worst-
case running time T and failure probability p < 1, with the following 
extra guarantee: we can check if A's output is correct in time O(1). 
Then there is a Las Vegas algorithm A' for the same task with 
expected running time O(T).



From Monte Carlo to Las Vegas algorithms

Theorem. Suppose I have a Monte Carlo algorithm A with worst-
case running time T and failure probability p < 1, with the following 
extra guarantee: we can check if A's output is correct in time O(1). 
Then there is a Las Vegas algorithm A' for the same task with 
expected running time O(T).

do

       run A on input x, let y be its output

until output y is good



From Monte Carlo to Las Vegas algorithms

Proof.

do

       run A on input x, let y be its output

until output y is good



Recap so far

We have seen how to convert Las Vegas to Monte Carlo, and 
(sometimes) the other way around.

We have seen some tools (concentration inequalities and union 
bound) that surely will prove useful. ("Chekhov's algorithmic gun")

But Monte Carlo algorithms were only required to succeed with 
some lame probability, like 2/3. What if we want 99.9999999%?



From Monte Carlo to (better) Monte Carlo

Theorem. Suppose I have a Monte Carlo algorithm A for a decision 
problem, with worst-case running time T and failure probability 1/3. 
Then there is a Monte Carlo algorithm A' for the same task with 
worst-case running time O(T log(1/δ)) and failure probability δ.

for 1 ≤ t ≤ k

       run A on input x, let yₜ in {0,1} be its output

return majority(y₁,...,yₖ)



From Monte Carlo to (better) Monte Carlo

Proof. 

for 1 ≤ t ≤ k

       run A on input x, let yₜ in {0,1} be its output

return majority(y₁,...,yₖ)



From Monte Carlo to (better) Monte Carlo

This was for decision problems. The majority trick can be 
generalised, for instance,* to real-valued outputs instead of binary: 
this is the median trick, where you amplify success probability by 
taking the median of the k outputs.

You'll see the details in the tutorial. Think about 
why "median" and not "average"!

*Under some conditions





Now, an algorithm

Problem: Given an unsorted array A of n distinct* integers, find the 
median.



Now, an algorithm

Problem: Given an unsorted array A of n distinct* integers, find the 
median.

Solution: Quick Selection (Median of Medians algorithm). 

Beautiful* divide-and-conquer deterministic algorithm running in 
time O(n).



Now, an algorithm

Problem: Given an unsorted array A of n distinct* integers, find the 
median.

Solution: Quick Selection (Median of Medians algorithm). 

Beautiful* divide-and-conquer deterministic algorithm running in 
time O(n).

*In theory



Now, a randomised algorithm

Problem: Given an unsorted array A of n distinct* integers, find the 
median.

Solution: Randomised Median

Beautiful randomised Monte Carlo algorithm running in time O(n).



Now, a randomised algorithm

Problem: Given an unsorted array A of n distinct* integers, find the 
median.

Solution: Randomised Median

Beautiful randomised Monte Carlo algorithm running in time O(n).

Introduces the idea of "sampling as a guide"



Randomised Median



Randomised Median



Randomised Median

Running time: 
O(m log m) + O(n) + O( (n/√m) log (n/√m) )

Choose m to have n/√m = m (balance first and last terms), get O(n)



Randomised Median

Correctness? 

Only incorrect when it outputs fail. 3 possible
"bad events":
1. Too many elements (in A) smaller than b
2. Too many elements (in A) bigger than b
3. Too many elements in C



Randomised Median

Correctness? 
By the union bound, can bound separately 
the probability of these 3 bad events.
"By symmetry" the first two events can be 
bounded the same way.



Randomised Median: why should it work?



Proof. 



Proof. 



Proof. 



Randomised Median: summary

Problem: Given an unsorted array A of n distinct* integers, find the 
median.

Solution: Randomised Median is a randomised Monte Carlo 
algorithm running in time O(n).

+ Probability amplification



This lecture: summary

• Concentration inequalities: Markov (first-moment method), 
Chebyshev (second-moment method), Chernoff/Hoeffding

• Union bound: your new best friend (with linearity of expectation)

• Probability amplification: majority vote, median trick

• Sampling as a guide or "sketch" 
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