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Some housekeeping

- A2 still being marked: deepest apologies (my fault): tonight/8am tom.

- A3 also being marked, and so is Participation mark: next Tuesday.

- Sample exam will be the topic of Week 13

- Feedback welcome: https://forms.office.com/r/DymMcfn47n

- Final exam on Tues, Nov 12 (9am)

https://forms.office.com/r/DymMcfn47n


Some housekeeping

USS…

https://student-surveys.sydney.edu.au/students/

https://student-surveys.sydney.edu.au/students/


You invest in the stock market. Each morning, you have to decide 
whether to sell or buy.
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You invest in the stock market. Each morning, you have to decide 
whether to sell or buy. At the end of the day, you see if you made the 
right decision. If you did, great: that day, you made money.

However, you don’t know anything about the stock market.
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So every morning, before you make your decision, all those friends will 
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So every morning, before you make your decision, all those friends will 
give you their advice.

Some might collude, or be completely wrong, or even try to make you 
lose money. But each of them will tell you to either sell or buy.

A question 



Then, based on those many pieces of 
advice, you decide.

(And you do that again, every day.)
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Then, based on those many pieces of 
advice, you decide.

(And you do that again, every day.)

What is a good strategy to make money?

A question 



Then, based on those many pieces of 
advice, you decide.

(And you do that again, every day.)

What is a provably good strategy to make 
money?

A question 



Let’s make this formal



• There are 𝑛 experts.

• Each day, 𝑡 = 1,… , 𝑇, each of them makes a prediction 𝑣𝑖,𝑡 ∈ {0,1}

• Based on those, you make your own prediction ො𝑢𝑡 ∈ {0,1}

• Then the “true” value 𝑢𝑡 ∈ {0,1} is revealed

• If ො𝑢𝑡 ≠ 𝑢𝑡, this counts as a mistake (mistakes are bad)

Goal: minimise total number of mistakes 𝑀 = σ𝑡=1
𝑇 1ෝ𝑢𝑡≠𝑢𝑡



• There are 𝑛 experts.

• Each day, 𝑡 = 1,… , 𝑇, each of them makes a prediction 𝑣𝑖,𝑡 ∈ {0,1}

• Based on those, you make your own prediction ො𝑢𝑡 ∈ {0,1}

• Then the “true” value 𝑢𝑡 ∈ {0,1} is revealed

• If ො𝑢𝑡 ≠ 𝑢𝑡, this counts as a mistake (mistakes are bad)

Goal: minimise total number of mistakes 𝑀 = σ𝑡=1
𝑇 1ෝ𝑢𝑡≠𝑢𝑡

But what do we mean by this? We don’t assume anything on the 
experts or on the true values. They could even all be adversarial!



• There are 𝑛 experts.

• Each day, 𝑡 = 1,… , 𝑇, each of them makes a prediction 𝑣𝑖,𝑡 ∈ {0,1}

• Based on those, you make your own prediction ො𝑢𝑡 ∈ {0,1}

• Then the “true” value 𝑢𝑡 ∈ {0,1} is revealed

• If ො𝑢𝑡 ≠ 𝑢𝑡, this counts as a mistake (mistakes are bad)

Goal: minimise total number of mistakes 𝑀 = σ𝑡=1
𝑇 1ෝ𝑢𝑡≠𝑢𝑡 compared 

to the best expert (whoever that is). 

Not make much more mistakes than the best advice in hindsight.



Warmup: a Perfect Expert



• There are 𝑛 experts. Suppose one of them (unknown) is always right.

• Each day, 𝑡 = 1,… , 𝑇, each of them makes a prediction 𝑣𝑖,𝑡 ∈ {0,1}

• Based on those, you make your own prediction ො𝑢𝑡 ∈ {0,1}

• Then the “true” value 𝑢𝑡 ∈ {0,1} is revealed

• If ො𝑢𝑡 ≠ 𝑢𝑡, this counts as a mistake (mistakes are bad)

Goal: minimise total number of mistakes 𝑀 = σ𝑡=1
𝑇 1ෝ𝑢𝑡≠𝑢𝑡



Theorem. There is a strategy guaranteeing 𝑀 ≤ 𝑛 − 1, regardless of 𝑇
(even for 𝑇 = ∞).
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Theorem. There is a strategy guaranteeing 𝑀 ≤ log 𝑛, regardless of 𝑇
(even for 𝑇 = ∞).



Claim. There is a strategy guaranteeing 𝑀 ≤ log2 𝑛, regardless of 𝑇
(even for 𝑇 = ∞).

Algorithm: Start with 𝑆 = {1,2, … 𝑛}. Each day, choose ො𝑢𝑡 to be the 
majority of advices from experts still in 𝑆. At the end of the day, remove 
from 𝑆 all experts who predicted wrong.
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Proof of correctness. Every time we make a mistake, at least half the 
experts in 𝑆 must have been wrong (we took the majority vote). So 
after each mistake the size of 𝑆 is at least halved. 



Claim. There is a strategy guaranteeing 𝑀 ≤ log2 𝑛, regardless of 𝑇
(even for 𝑇 = ∞).

Algorithm: Start with 𝑆 = {1,2, … 𝑛}. Each day, choose ො𝑢𝑡 to be the 
majority of advices from experts still in 𝑆. At the end of the day, remove 
from 𝑆 all experts who predicted wrong.

Proof of correctness. Every time we make a mistake, at least half the 
experts in 𝑆 must have been wrong (we took the majority vote). So 
after each mistake the size of 𝑆 is at least halved. But we always have 
𝑆 ≥ 1, since (by assumption) there exists an expert who is always 

right (and therefore never gets removed).



Claim. There is a strategy guaranteeing 𝑀 ≤ log2 𝑛, regardless of 𝑇
(even for 𝑇 = ∞).

Algorithm: Start with 𝑆 = {1,2, … 𝑛}. Each day, choose ො𝑢𝑡 to be the 
majority of advices from experts still in 𝑆. At the end of the day, remove 
from 𝑆 all experts who predicted wrong.

Proof of correctness. Since we started with 𝑆 = 𝑛, our total number 
𝑀 of mistakes must then satisfy

𝑛

2𝑀
≥ 1

that is, 𝑀 ≤ log2 𝑛.



Nobody’s Perfect



This is great! But… things completely fail if there is no “perfect expert.”

What if even the best expert made some mistakes? Can we make 
things robust?
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What if even the best expert made some mistakes? Can we make 
things robust?

Let’s revisit the algorithm.

We had 𝑛 weights 𝑤1, … 𝑤𝑛 initialised to 1. 

At day 𝑡, our prediction was ො𝑢𝑡 ← Maj(𝑤1𝑣1,𝑡 +⋯+ 𝑤𝑛𝑣𝑛,𝑡)

Whenever expert 𝑖 made a mistake, we set 𝑤𝑖 ← 0 ⋅ 𝑤𝑖. 
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This is great! But… things completely fail if there is no “perfect expert.”

What if even the best expert made some mistakes? Can we make 
things robust?

Let’s revisit the algorithm.

We have 𝑛 weights 𝑤1, … 𝑤𝑛 initialised to 1. 

At day 𝑡, our prediction is ො𝑢𝑡 ← Maj(𝑤1𝑣1,𝑡 +⋯+ 𝑤𝑛𝑣𝑛,𝑡)

Whenever expert 𝑖 made a mistake, we set 𝑤𝑖 ← ½ ⋅ 𝑤𝑖. 



Algorithm (Multiplicative Weights Update).

Start with 𝑛 weights 𝑤1, … 𝑤𝑛 initialised to 1. 

Each day, choose the weighted majority ො𝑢𝑡 ← Maj(𝑤1𝑣1,𝑡 +⋯+ 𝑤𝑛𝑣𝑛,𝑡)

At the end of the day, set 𝑤𝑖 ← ½ ⋅ 𝑤𝑖 for expert 𝑖 made a mistake. 





Theorem. The MWU algorithm guarantees 𝑀 ≤ 2.41(𝑀∗ + log2 𝑛), 
where 𝑀∗ is the # of mistakes made by the best expert. This holds 
regardless of 𝑇 (even for 𝑇 = ∞).

Proof. Let 𝑊𝑡 be the total weights of experts on day 𝑡. Initially, 𝑊0 = 𝑛. 
Every time we make a mistake, this means at least half the weight was on 
experts who did a mistake (since we took the weighted majority). So if we 
made a mistake at day 𝑡, 

𝑊𝑡+1 = 𝑊𝑡
good
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Now, look at the best expert (in hindsight). They made 𝑀∗ mistakes, so 
their final weight is 1/2 𝑀∗

. 
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Let’s go further!



This is what we proved:

Algorithm (Multiplicative Weights Update).

Start with 𝑛 weights 𝑤1, … 𝑤𝑛 initialised to 1. 

Each day, choose the weighted majority ො𝑢𝑡 ← Maj(𝑤1𝑣1,𝑡 +⋯+ 𝑤𝑛𝑣𝑛,𝑡)

At the end of the day, set 𝑤𝑖 ← ½ ⋅ 𝑤𝑖 for expert 𝑖 made a mistake. 

Theorem. The MWU algorithm guarantees 𝑀 ≤ 2.41(𝑀∗ + log2 𝑛), 
where 𝑀∗ is the # of mistakes made by the best expert. This holds 
regardless of 𝑇 (even for 𝑇 = ∞).
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Using exactly the same argument (try it!), we get, for any 𝛽 ∈ (0,1):

Algorithm (Multiplicative Weights Update).

Start with 𝑛 weights 𝑤1, … 𝑤𝑛 initialised to 1. 

Each day, choose the weighted majority ො𝑢𝑡 ← Maj(𝑤1𝑣1,𝑡 +⋯+ 𝑤𝑛𝑣𝑛,𝑡)

At the end of the day, set 𝑤𝑖 ← 𝛽 ⋅ 𝑤𝑖 for expert 𝑖 made a mistake. 
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regardless of 𝑇 (even for 𝑇 = ∞).
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where 𝑀∗ is the # of mistakes made by the best expert. This holds 
regardless of 𝑇 (even for 𝑇 = ∞).



Using exactly the same argument we get, for any 𝛽 = 1 − 𝜀 ∈ (0,1):

Theorem. The MWU algorithm guarantees
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≈ 2 𝑀∗ +
ln 𝑛

𝜀

where 𝑀∗ is the # of mistakes made by the best expert. This holds 
regardless of 𝑇 (even for 𝑇 = ∞).



Is that tight?
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Can we improve that factor 2?
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where 𝑀∗ is the # of mistakes made by the best expert. This holds 
regardless of 𝑇 (even for 𝑇 = ∞).

Can we improve that factor 2? No. Consider two sets of 𝑛/2 experts, 
where experts in the first set are wrong on odd-numbered days, and 
those in the second set are wrong on even days. That will force 𝑇 mistakes 
(while the best experts make 𝑇/2).
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deterministically choosing the weighted majority, pick the answer at 
random according to the weights.
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regardless of 𝑇 (even for 𝑇 = ∞).
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deterministically choosing the weighted majority, pick the answer at 
random according to the weights. Improves the constant 2 to some 𝑐 < 2.



Theorem. The MWU algorithm guarantees

𝑀 ≈ 2 𝑀∗ +
ln 𝑛

𝜀

where 𝑀∗ is the # of mistakes made by the best expert. This holds 
regardless of 𝑇 (even for 𝑇 = ∞).

Can we improve that factor 2? Yes. With randomisation! Instead of 
deterministically choosing the weighted majority, pick the answer at 
random according to the weights. Improves the constant 2 to some 𝑐 < 2. 
(But only guarantee on expected number of mistakes).











Concluding remarks



• This was a short intro to the Multiplicative Weights Update 
Algorithms. Much more to say!
• Different predictions (not only binary)

• Different payoffs (not just 0-1 loss: correct/incorrect)

• Randomised version!

• Discovered/rediscovered in many areas: learning theory, game 
theory/economics, computational geometry, convex optimisation…

• Many (sometimes unexpected) applications: online learning/bandits, 
semidefinite programming, flow algorithms, zero-sum games, 
algorithmic takes on evolution (!)



Some pointers if you have questions or want to know more about any 
of those (or connections to some of those topics):

• The Multiplicative Weights Update Method: a Meta-Algorithm and 
Applications. Arora, Hazan, Kale (2012): 
https://theoryofcomputing.org/articles/v008a006/

• Lecture notes by Daniel Hsu (2017), Chapter 1: 
https://www.cs.columbia.edu/~djhsu/coms6998-f17/notes.pdf

https://theoryofcomputing.org/articles/v008a006/
https://www.cs.columbia.edu/~djhsu/coms6998-f17/notes.pdf
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