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COMPx270: Randomised and
Advanced Algorithms




Some housekeeping

A2 still being marked: deepest apologies (my fault)
- A3 (after Simple Extension) due tomorrow

- Don'tforget the "participation" assignment (Oct 18)
- Sample exam is out, will be the topic of Week 13

- Feedback welcome: https://forms.office.com/r/DymMcfn4/n

| J
-  Finalexam on Tues, Nov 12 Qam) — Ma/u JM
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https://forms.office.com/r/DymMcfn47n
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Learning and testing (discrete) probability distributions
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Preliminaries on probability distributions
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Preliminaries on probability distributions
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Preliminaries on probability distributions
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A view of TV distance

The

University of Sydney

Alice and Bob play a game, where they both know two prob-
ability distributions p, q. Alice starts by tossing a fair coin,
and does not show the outcome to Bob: if it is Heads, then she
draws x ~ p; if it is Tails, she draws x ~ q. Then she shows the
value of x to Bob, who must guess if the coin toss was Heads.
Clearly, just by random guessing, Bob can win the game with
probability 1/2. What the lemma says is that he can do better:
there is a strategy for him to win with probability

1 drv(p,9q)

Pr[Bob wins | = 5t >

and, moreover, this is the best possible.

age



The case of a coin

How many times 1 do you need to flip the coin to learn its
true bias p to accuracy +¢, and be correct with probability at
least 1 — 67
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The case of a coin

Theorem 50. Suppose we are promised that the true bias p of the coin
satisfies 0 < p < g < %, for some known value q. Then estimating the
bias of the coin to an additive ¢, with probability at least 1 — 0, can be done

withn = O (812 log %) i.i.d. samples. (Moreover, this is optimal.)
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The case of a coin

The University of Sydney

Theorem 50. Suppose we are promised that the true bias p of the coin
satisfies 0 < p < q < 3, for some known value q. Then estimating the
bias of the coin to an additive ¢, with probability at least 1 — 0, can be done

withn = O (812 log },) i.i.d. samples. (Moreover, this is optimal.)

Corollary 50.1. Estimating the bias of a coin to an additive ¢, with prob-
ability at least 1 — 0, can be done with n = O(l2 log %) i.i.d. samples.

€ '
(Moreover, this is optimal.)
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The case of a coin

Theorem 50. Suppose we are promised that the true bias p of the coin
satisfies 0 < p < q < 3, for some known value q. Then estimating the
bias of the coin to an additive ¢, with probability at least 1 — 0, can be done
with n = O(Si2 log 1) i.i.d. samples. (Moreover, this is optimal.)



The case of a coin: what about testing?
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The case of a coin: what about testing?

Theorem 51. Testing whether the bias of a coin is 1/2 or at least 1/2 + ¢,
with probability at least 1 — 0, can be done with n = O (elz log %) i.i.d.
samples. (Moreover, this is optimal.)

o betlo Bar @a:w-g
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The

The case of a coin: what about testing?

Theorem 52. Forany0 < o« < 1/2and ¢ € (0,1], testing whether
the bias of a coin is at most « or at least «(1 + €), with probability at least

1 — 0, can be done with n = O(ﬁ log %) 1.1.d. samples.
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The case of a coin: what a

pout testing?
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The

Beyond coins: k is large

University of Sydney

Domain sizes grow quite fast, and in most settings k is huge.
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Learning in TV distance
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Learning in TV distance: first attempt
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Learning in TV distance: second attempt
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The

Learning in TV distance: third attempt

Theorem 53. Learning an unknown distribution p € A(k) to total
variation distance € (with success probability 1 — 0) can be done with

k+log L
n—O( +;g0)
&

1.i.d. samples. (Moreover, this is optimal)
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Learning in TV distance: third attempt -

i.i.d. samples. (Moreover, this is optimal.)
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Learning in TV distance: second thlrd attempt o 2e!)
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Theorem 53. Learning an unknown distribution p € A(k) to total
variation distance € (with success probability 1 — ) can be done with

Learning in TV distance: second third attempt =of esl)

&

i.i.d. samples. (Moreover, this is optimal.)
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Testing In TV distance
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Testing Iin TV distance: identity testing

The University of Sydney

Give an algorithm A which takes parameters ¢, € (0, 1]
and n samples from p, and:

e If p = q,then Pr[ A outputs yes| > 1 —J;
o Ifdry(p,q) > ¢ then Pr[ A outputs no| > 1— 0

(if 0 < drv(p,q) < ¢ then A is off the hook and can output
whatever).

<8
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Testing in TV distance: identity testing via learning

- ) g b

PPPPPP



Testing in TV distance: uniformity is all you need

Theorem 54 (Identity to uniformity reduction). Suppose there is an
algorithm A for uniformity testing, which takes n = n(k, e, ) i.i.d.
samples from the unknown distribution. Then there is an algorithm A’
for identity testing over a domain of size k to any fixed q € A(k), which
takes n = n(4k,e/4,0) i.id. samples from the unknown distribution.
Moreover, A’ is efficient if A is.
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Testing in TV distance: uniformity testing
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Testing in TV distance: uniformity testing

Theorem 55. Testing uniformity of an unknown distribution p € A(k)
to total variation distance e (with success probability 2 /3) can be done

with B
g

i.1.d. samples, using Algorithm 21. (Moreover, this is optimal for constant
success probability.)

University of Sydney

Page 31



Testing In TV distance: uniformity testing, key ideas
NN — Qz
“P’uet“p < W“(D/MQ“L
- bg PG, HF-M;{HZ:O

},Q ™v(pug)oe, Mf-aelfz > ’2‘\1%



Testing In TV distance: uniformity testing, key ideas
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The

Testing in TV distance: uniformity testing, algorithm

Input: Multiset of » i.1.d. samples x1, ..

(0,1] and k = |X|

2
1: Set T «¢ 1+kz€

2: Compute

where N; <= Y"1 1y, _q.
3. if Z > T then return no
4: else return yes

., Xy € X, parameters ¢ €

> O(n) time if X is known

> Not uniform
> Uniform

University of Sydney
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Testing In TV dlstance uniformity testing
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Testing in TV distance: uniformity testing

The University of Sydney

Input: Multiset of 7 ii.d. samples x1,...,x, € X, parameterse €

(0,1] and k = | X|
14262
. Set T + %

: Compute > O(n) time if X' is known
1 1 (N )
Z = -7 II. = = —T ]
Bl e T
where N;j < Y1, L=y
. if Z > 7 then return no > Not uniform
. else return yes > Uniform
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Testing in TV distance: uniformity testing

The University of Sydney

Input: Multiset of 7 ii.d. samples x1,...,x, € X, parameterse €

(0,1] and k = | X|
14262
. Set T + %
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where N;j < Y1, L=y
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. else return yes > Uniform
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Testing in TV distance: uniformity testing

The University of Sydney

Input: Multiset of 7 ii.d. samples x1,...,x, € X, parameterse €
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Testing in TV distance: uniformity testing

The University of Sydney

Input: Multiset of 7 ii.d. samples x1,...,x, € X, parameterse €

(0,1] and k = | X|
14262
. Set T + %

: Compute > O(n) time if X' is known
1 1 (N )
Z = -7 II. = = —T ]
Bl e T
where N;j < Y1, L=y
. if Z > 7 then return no > Not uniform
. else return yes > Uniform
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Testing in TV distance: uniformity testing, summary

Theorem 55. Testing uniformity of an unknown distribution p € A(k)
to total variation distance ¢ (with success probability 2 /3) can be done

with
B ( \/k)
n = 82

i.1.d. samples, using Algorithm 21. (Moreover, this is optimal for constant
success probability.)

Mot oo )
iy O(E”M)
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Summary
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