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COMPx270: Randomised and
Advanced Algorithms




Some housekeeping

A2 being marked, solutions online

- A3 (after Simple Extension) due next Wednesday

- Don'tforget the "participation" assignment (Oct 18)
- Sample exam is out

- Feedback welcome: https://forms.office.com/r/DymMcfn4/n

- Finalexam on Tues, Nov 12 (9am)

The University of Sydney


https://forms.office.com/r/DymMcfn47n

Assignment 2: what was this about?

Consistent Hashing:

David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina Panigrahy, Matthew 3.

Levine, Daniel Lewin. Consistent Hashing and Random Trees: Distributed Caching Protocols

for Relieving Hot Spots on the World Wide Web. STOC 1997: 654-663

The University of Sydney

Abstract

We describe a family of caching protocols for distrib-uted networks
that can be used to decrease or eliminate the occurrence of hot spots
in the network. Our protocols are particularly designed for use with
very large networks such as the Internet, where delays caused by
hot spots can be severe, and where it is not feasible for every server
to have complete information about the current state of the entire
network. The protocols are easy to implement using existing net-
work protocols such as TCP/IP, and require very little overhead.
The protocols work with local control, make efficient use of exist-
ing resources, and scale gracefully as the network grows.

Our caching protocols are based on a special kind of hashing
that we call consistent hashing. Roughly speaking, a consistent
hash function is one which changes minimally as the range of the
function changes. Through the development of good consistent
hash functions, we are able to develop caching protocols which do
not require users to have a current or even consistent view of the
network. We believe that consistent hash functions may eventually
prove to be useful in other applications such as distributed name
servers and/or quorum systems.
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Assignment 2: what was this about?

Consistent Hashing:

David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina Panigrahy, Matthew 3.
Levine, Daniel Lewin. Consistent Hashing and Random Trees: Distributed Caching Protocols

for Relieving Hot Spots on the World Wide Web. STOC 1997: 654-663

Akamai Technologies, Inc.
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This week: Linear Programming, and Randomised Rounding

Maximize a linear function subject to linear inequality con-
straints on variables xq, . .., x, of interest.
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Linear Programming

The University of Sydney

Maximize a linear function subject to linear inequality con-

straints on variables xq, . .., x, of interest.
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Linear Programming =

subject to

Use them to solve problems either exactly or approximately.
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Integer Linear Programming




Integer Linear Programming: st-Min-CUT
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Integer Linear Programming: st-Min-CUT

maximise — ) _ceX,

ecE
subject to
ys =0
yr=1

Yo < Yu + X, Ve = (u,v) €E
Xe, Yo € {0,1} Vee E,veV
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LP Relaxation: st-Min-CUT

The University of Sydney
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maximise — Zcexe

LP Relaxation: st-Min-CUT

Ys =0

yr=1

Yo < Yy + Xe, Ve = (u,v) € E
Xe, Yo € {0,1} YVee EEveV

maximise — Zcexe
ecE

Fact 45.1. Let ortyp be the optimal value of a solution to an ILP (max- subject to
imisation problem), and ortyp be the optimal value of a solution to its LP ys =0
. Yy = 1
relaxation. Then < yutte Ve (5,0) CE
OPTyLp < OPTLp. Xe,¥o €10,1] VeeEveV

(For a minimisation problem, the inequality is reversed.)

ProorQw - ILP OLP s, e LPwncJ)am"s
(&) ndlancotier  ‘noum o 'Nxv'\
o sl

o Foo WLO OP

The University of Sydney Page 16



The

LP Relaxation: st-Min-CUT

University of Sydney

maximise — Zcexe
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subject to
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LP Rounding: st-Min-CUT

1: Pick Tin (0,1) uniformly at random.
2: forallv € V do
3: Set y, = 11if y; > 7, 0 otherwise

4: return y.
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The

LP Rounding: st-Min-CUT
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Xe, Yo € [0,1] Vec E,veV
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LPand ILP in practice

— https://au.mathworks.com /help /optim /ug /linprog.html

— https://au.mathworks.com /help /optim /ug /intlinprog.html

— https://reference.wolfram.com/language /ref/LinearProgramming.html

— https://docs.scipy.org/doc/scipy /reference /generated /scipy.optimize.linprog.html
— https://docs.scipy.org/doc/scipy /reference /generated /scipy.optimize.milp.html

- [...]
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ILP+LP Relaxationt+Rounding: Max-SAT
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The

HP+LP Relaxation+Rounding: Max-SAT

Theorem 47. The “obvious” randomised algorithm which sets each
variable x; independently and uniformly at random gives, in expectation, a
X-approximation for Max-SAT.

University of Sydney
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° ° Theorem 47. The “obvious” randomised algorithm which sets each
I‘LHP_Re'I'a*ah'e'Hﬂeﬂﬂd'mgf M qX-S AT variable x; independently and uniformly at random gives, in expectation, a

%-approximation for Max-SAT.
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ILP+LP Relaxation+Rounding: Max-SAT

m
maximise Z Zj

j=1
subject to
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u’JC;:t‘:}‘ﬁ zj € {0,1} Vi<j<m
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ILP+LP Relaxationt+Rounding: Max-SAT

The University of Sydney
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ILP+LP Relaxation+Rounding: Max-SAT

m
maximise Z Zj
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The

ILP+LP Relaxationt+Rounding: Max-SAT
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b LP

maximise Z zZj
j=1

subject to

Zy+ Y, A-yi) >z

i:mx; €C)

yi € {0,1}
Zj < {0,1}

maximise Z zZj
j=1

subject to
Yovi+ Y, (I—-yi) >z
i:x;€C; i:mx;€C;
0<y <1
0 S Z]‘ S 1
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m
maximise Z zZj

) ) =1
ILP+LP Relaxationt+Rounding: Max-SAT wbjectto
Y, vit+ ), (l-y)>z  Vi<j<m
i:x;€C; i:mx; €C;
y; € {0,1} Vi<i<mn
zi € {0,1} V1<j<

m
maximise Z Zj
j=1

subject to

i:x,-eC]- i:—\X,’EC]'

Input: Instance ¢ = (Cq,...,C;,) of MAX-SAT on n variables D<yi< V1
1: Solve the LP relaxation (Fig. 16), getting solution (y*, z*). 0<z <1 V1
2: forall 1 <i <ndo

3: Set x; = 1 with probability v, independently of others.

4: return x.
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The

ILP+LP Relaxation+Rounding: Max-SAT

Theorem 48. The randomised rounding given in Algorithm 20 gives, in

expectation, a (1 — %)—approximation for Max-SAT.
O

~ 0.632

University of Sydney
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ILP+LP Requqhon+Round|ng Max-SAT
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ILP+LP Relaxationt+Rounding: Max-SAT
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m
maximise Z z;

ILP+LP Relaxation+Rounding: Max-SAT =

subject to
Y vi+ Y (I-y) >z  VI<j<m
i:x;€C; i:mx; €C;
0<yi<1 V1<i<
0<z <1 V1<j<
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Max-SAT: Can we do better?
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The

Max-SAT: Can we do better?

Theorem. The “best-of-two” approach which runs both the naive
randomised algorithm and the randomised rounding gives, in
expectation, a 3/4-approximation for Max-SAT.

University of Sydney
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Theorem. The “best-of-two” approach which

- . 2 runs both the naive randomised algorithm and
qu SAT' an we dO be"er ¢ the randomised roundin%givessl&_il_n expectation, a
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Recap
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