The University of Sydney

COMMONWEALTH OF AUSTRALIA

Copyright Regulations 1969

WARNING

This material has been reproduced and communicated to you by or on behalf
of the University of Sydney pursuant to Part VB of the Copyright Act 1968
(the Act). The material in this communication may be subject to copyright under
the Act. Any further copying or communication of this material by you may be
the subject of copyright protection under the Act.

Do not remove this notice.

Page 1

COMPx270: Randomised and
Advanced Algorithms

Some housekeeping

A2 being marked, solutions online

- A3 (after Simple Extension) due next Wednesday

- Don'tforget the "participation" assignment (Oct 18)
- Sample exam is out

- Feedback welcome: https://forms.office.com/r/DymMcfn4/n

- Finalexam on Tues, Nov 12 (9am)

The University of Sydney

https://forms.office.com/r/DymMcfn47n

Assignment 2: what was this about?

Consistent Hashing:

David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina Panigrahy, Matthew 3.

Levine, Daniel Lewin. Consistent Hashing and Random Trees: Distributed Caching Protocols

for Relieving Hot Spots on the World Wide Web. STOC 1997: 654-663

The University of Sydney

Abstract

We describe a family of caching protocols for distrib-uted networks
that can be used to decrease or eliminate the occurrence of hot spots
in the network. Our protocols are particularly designed for use with
very large networks such as the Internet, where delays caused by
hot spots can be severe, and where it is not feasible for every server
to have complete information about the current state of the entire
network. The protocols are easy to implement using existing net-
work protocols such as TCP/IP, and require very little overhead.
The protocols work with local control, make efficient use of exist-
ing resources, and scale gracefully as the network grows.

Our caching protocols are based on a special kind of hashing
that we call consistent hashing. Roughly speaking, a consistent
hash function is one which changes minimally as the range of the
function changes. Through the development of good consistent
hash functions, we are able to develop caching protocols which do
not require users to have a current or even consistent view of the
network. We believe that consistent hash functions may eventually
prove to be useful in other applications such as distributed name
servers and/or quorum systems.

Page 4

Assignment 2: what was this about?

Consistent Hashing:

David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina Panigrahy, Matthew 3.

Levine, Daniel Lewin. Consistent Hashing and Random Trees: Distributed Caching Protocols

for Relieving Hot Spots on the World Wide Web. STOC 1997: 654-663

The University of Sydney

Abstract

We describe a family of caching protocols for distrib-uted networks
that can be used to decrease or eliminate the occurrence of hot spots
in the network. Our protocols are particularly designed for use with
very large networks such as the Internet, where delays caused by
hot spots can be severe, and where it is not feasible for every server
to have complete information about the current state of the entire
network. The protocols are easy to implement using existing net-
work protocols such as TCP/IP, and require very little overhead.
The protocols work with local control, make efficient use of exist-
ing resources, and scale gracefully as the network grows.

Our caching protocols are based on a special kind of hashing
that we call consistent hashing. Roughly speaking, a consistent
hash function is one which changes minimally as the range of the
function changes. Through the development of good consistent
hash functions, we are able to develop caching protocols which do
not require users to have a current or even consistent view of the
network. We believe that consistent hash functions may eventually
prove to be useful in other applications such as distributed name
servers and/or quorum systems.

Page 5

Assignment 2: what was this about?

Consistent Hashing:

David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina Panigrahy, Matthew 3.
Levine, Daniel Lewin. Consistent Hashing and Random Trees: Distributed Caching Protocols

for Relieving Hot Spots on the World Wide Web. STOC 1997: 654-663

Akamai Technologies, Inc.

The University of Sydney Page 6

This week: Linear Programming, and Randomised Rounding

Maximize a linear function subject to linear inequality con-
straints on variables xq, . .., x, of interest.

The University of Sydney Page 7

Linear Programming

The University of Sydney

Maximize a linear function subject to linear inequality con-

straints on variables xq, . .., x, of interest.

n
maximise Zcixl-

7 i=1
subject to

e .
n,,}?'%

Page 8

n
maximise Zcixl-

Linear Programming e
- Y Ajix; < b, 1<j<m
Example: Max Flow! G - (\/‘) O{Aﬂédleal = . 1<:<n
; s b€ Vv = ==
/\/ cw‘oadbﬁ {eele ce
A A
DAVANSE:
o /'
\yo '
(YnGDC % eE ESIA
&k Glu)
\C}wQ/E

YU

Ve (u\‘v)E.E ™. ('V,U)éE

S %V > @ VAV TS

Linear Progrqmmmg

@LPS (UWILQQ Wfiﬁb’"m

B LPs MW M j‘% "

@ W()/ MN"{'%M(; 4’0%0. t&ul’

maximise Zcixl-

Linear Programming =

subject to

Use them to solve problems either exactly or approximately.

T T %wwﬁ

m&mu 1 @mT ((\;EDAJ)

//o,c -orT(l) < VAL/UWZ(() < ort(I)
™ E (0, \] Mi\ W‘g-, /V:ZLQW
[E[vae(S)j

The University of Sydney

Integer Linear Programming

Integer Linear Programming: st-Min-CUT

Direded 6= (V,e) , cats $c,

Integer Linear Programming: st-Min-CUT

maximise —) _ceX,

ecE
subject to
ys =0
yr=1

Yo < Yu + X, Ve = (u,v) €E
Xe, Yo € {0,1} Vee E,veV

The University of Sydney Page 14

LP Relaxation: st-Min-CUT

The University of Sydney

maximise —) cexe

ecE
subject to
ys =0
yr =1

Yo < Yy + Xe, Ve = (u,v) € E
Xe, Yo € [0,1] Vec E,veV

maximise — Zcexe
ecE

subject to
ys =0
ye=1

Yo < Yy + Xe,

Xe, Yo € {0,1}

Ve = (u,v) € E
YVec E,veV

Page 15

maximise — Zcexe

LP Relaxation: st-Min-CUT

Ys =0

yr=1

Yo < Yy + Xe, Ve = (u,v) € E
Xe, Yo € {0,1} YVee EEveV

maximise — Zcexe
ecE

Fact 45.1. Let ortyp be the optimal value of a solution to an ILP (max- subject to
imisation problem), and ortyp be the optimal value of a solution to its LP ys =0
. Yy = 1
relaxation. Then < yutte Ve (5,0) CE
OPTyLp < OPTLp. Xe,¥o €10,1] VeeEveV

(For a minimisation problem, the inequality is reversed.)

ProorQw - ILP OLP s, e LPwncJ)am"s
(&) ndlancotier ‘noum o 'Nxv'\
o sl

o Foo WLO OP

The University of Sydney Page 16

The

LP Relaxation: st-Min-CUT

University of Sydney

maximise — Zcexe

ecE
subject to
ys =10
ye=1

Yo < Yu + X, Ve = (u,v) € E
Xe, Yo € {0,1} YVee EEveV

maximise — Zcexe

e€E
subject to
ys =0
yr =1

@ Ve = (u,v) € E
Xe, Yo € |0, YVee E,veV

Jayu st Ve

Page 17

maximise —) ceX,

o e€E
LP ROUI‘ldlng! subject to
ys =10
yr=1
Yo < Yu + Xe, Ve = (u,v) € E
Xe, Yo € {0,1} Ve€ E,veV

maximise — Z CeXe

ecE
subject to
ys =0
yr=1

Yo < Yu + Xe, Ve = (u,v) € E
Xe, Yo € [0,1] VYVec E,v eV

The University of Sydney Page 18

LP Rounding: st-Min-CUT

1: Pick Tin (0,1) uniformly at random.
2: forallv € V do
3: Set y, = 11if y; > 7, 0 otherwise

4: return y.

e:(u{/\]) 1/.\04]'1% Ub"usol 'fr,’l
N~ e A
Yo & Yu S < Y
;./—:-{-d—;—(

o Yi v

The University of Sydney

= Bleely, 40)= fu b
<xy

maximise — Zcexe
ecE

subject to
Ys =0
yr=1
Yo < Yy + Xe, Ve = (u,v) € E
Xe, Yo € {0,1} YVee EEveV

maximise — Zcexe
ecE

subject to
ys =0
yr=1
Yo < Yy + Xe, Ve = (u,v) € E
Xe, Yo € [0,1] Vee E,oeV

A

T e

Page 19

The

LP Rounding: st-Min-CUT

g4
IE[NDQ&M(S)J: e%re ¢qUan'j

University of Sydney

— Z[¢, Pr{e.bw}]

Z C . fr{ «9:* <1 (l.j:,j

@ ek
< 2

BW\"‘MAO (°f")e¥'

(f

¥
Cynr Luv

_ OPT

= LP i
é —OPT“__P = N’OQ\UWQJ—

maximise — Zcexe
ecE

subject to
Ys =0
yr =1
Yo < Yy + Xe, Ve = (u,v) € E
Xe, Yo € {0,1} VYVecE,veV

maximise — Zcexe
ecE

subject to
yr=1

Yo < Yu + Xe, Ve = (u,v) € E
Xe, Yo € [0,1] Vec E,veV

Page 20

LPand ILP in practice

— https://au.mathworks.com /help /optim /ug /linprog.html

— https://au.mathworks.com /help /optim /ug /intlinprog.html

— https://reference.wolfram.com/language /ref/LinearProgramming.html

— https://docs.scipy.org/doc/scipy /reference /generated /scipy.optimize.linprog.html
— https://docs.scipy.org/doc/scipy /reference /generated /scipy.optimize.milp.html

- [...]

The University of Sydney Page 21

https://au.mathworks.com/help/optim/ug/linprog.html
https://au.mathworks.com/help/optim/ug/intlinprog.html
https://reference.wolfram.com/language/ref/LinearProgramming.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.milp.html

ILP+LP Relaxationt+Rounding: Max-SAT

- X, 6?‘:%@ i

/Il
l 0

(I); C,ACI/_./\CM wﬁlﬂu
C) 'x‘\/?r v_ \/10

%« SAT: | d)Wc(.waxJ"o mho, —x, o P= m?

CSAT “w NP- cngQJz

o Max-SAT. hhow anamy CsmImJenle7

(Np,um[i) bk .

The

HP+LP Relaxation+Rounding: Max-SAT

Theorem 47. The “obvious” randomised algorithm which sets each
variable x; independently and uniformly at random gives, in expectation, a
X-approximation for Max-SAT.

University of Sydney

Page 23

° ° Theorem 47 The “obui andomised algorithm which sets each
Mke*ﬂ*dhﬁﬂﬂeﬂﬂd'lﬂgf MCIX-S AT iable x; independen tly d niformly at random gives, in expectation, a

-approximation for Max-SAT.

P_@g Fox [<yém comcl C;. gj
Cj: r,x(-'\/ x. VI Vo VT Vx wm')?ﬂgw

p;‘: 1CJl ‘2 ¢3 '25 ‘2 m
PLC nd <h -

[F[wallo) - Z‘Pfcw] Z(% 2)z X
| A

University of Sydney L Page 24

° ° Theorem 47. The “obvious” randomised algorithm which sets each
I‘LHP_Re'I'a*ah'e'Hﬂeﬂﬂd'mgf M qX-S AT variable x; independently and uniformly at random gives, in expectation, a

%-approximation for Max-SAT.

Pl | bk ol > b allj

even 2 2
w adbad.

The University of Sydney Page 25

ILP+LP Relaxation+Rounding: Max-SAT

m
maximise Z Zj

j=1
subject to
Y ovi+), (1—w) >z Vi<j<m
1:x;€C; 1:ox;€C
’ /7%-6{0,1} Vi<i<mn
u’JC;:t‘:}‘ﬁ zj € {0,1} Vi<j<m

L C, sl

e University of Sydney Page 26

ILP+LP Relaxationt+Rounding: Max-SAT

The University of Sydney

<C
—_

<< <
—_ —_
IA A IN
. ~.

~.

IA A IN

3 =

ILP+LP Relaxation+Rounding: Max-SAT

m
maximise Z Zj
j=1

subject to

>, v+), (1—-y)

i:x; €C; i:mx; €C
O<yi =1
OSZ]‘il

The University of Sydney

T <C

_
VA
~.

VAN

VAN
=

m
maximise) zj
j=1
subject to
Yovi+), (1—y) >z
i:xiEC]- i:—|x,~€Cj
yi € {0,1}
Zj S {0,1}

IA
3

Page 28

The

ILP+LP Relaxationt+Rounding: Max-SAT

Lonke soud ? Coo ol e "2
g v od w30

b w [o/]—> (}:W'LO— Seam o

. o m&w.
R R
oyl

University of Sydney

b LP

maximise Z zZj
j=1

subject to

Zy+ Y, A-yi) >z

i:mx; €C)

yi € {0,1}
Zj < {0,1}

maximise Z zZj
j=1

subject to
Yovi+ Y, (I—-yi) >z
i:x;€C; i:mx;€C;
0<y <1
0 S Z]‘ S 1

Page 29

m
maximise Z zZj

)) =1
ILP+LP Relaxationt+Rounding: Max-SAT wbjectto
Y, vit+), (l-y)>z Vi<j<m
i:x;€C; i:mx; €C;
y; € {0,1} Vi<i<mn
zi € {0,1} V1<j<

m
maximise Z Zj
j=1

subject to

i:x,-eC]- i:—\X,’EC]'

Input: Instance ¢ = (Cq,...,C;,) of MAX-SAT on n variables D<yi< V1
1: Solve the LP relaxation (Fig. 16), getting solution (y*, z*). 0<z <1 V1
2: forall 1 <i <ndo

3: Set x; = 1 with probability v, independently of others.

4: return x.

The University of Sydney Page 30

Y ovi+ Y (-y)>z VI<j<m

The

ILP+LP Relaxation+Rounding: Max-SAT

Theorem 48. The randomised rounding given in Algorithm 20 gives, in

expectation, a (1 — %)—approximation for Max-SAT.
O

~ 0.632

University of Sydney

Page 31

ILP+LP Requqhon+Round|ng Max-SAT

@-[MQQML (DC)J Z P,—ZC N sqb,’@ujj o E(j@wii;wz] V1< <m
J* o n
= Z (l - md‘ Sa}])
] ’ AH-GH.
Fﬂ) C = \/ T 3 L a+b
Lés 'te.—,—‘ . a §7
P\’[C) me}.]: T)— (] 6) TT ‘ﬁ meq'*\%_wi
(€ S ‘e‘T -

[

(<7%\ 2(’9)))) <(1I- _eé

>./2J

ILP+LP Relaxationt+Rounding: Max-SAT

\JJ Pr[Cj nJGOJ’] < ((, 2

J

0,

L.O——))Z
l)) 22
) Z'zo = (,"“)OPTLP

(I DOWJLP = (“- opT¢ o

>
&
2

b
o

) <
waajz f(hﬁjﬁgq.“
i‘
(I-(

m
maximise Z z;

ILP+LP Relaxation+Rounding: Max-SAT =

subject to
Y vi+ Y (I-y) >z VI<j<m
i:x;€C; i:mx; €C;
0<yi<1 V1<i<
0<z <1 V1<j<

ij o S/\ma@ ﬁﬂ‘ﬂw,

The University of Sydney Page 34

Max-SAT: Can we do better?

The University of Sydney Page 35

The

Max-SAT: Can we do better?

Theorem. The “best-of-two” approach which runs both the naive
randomised algorithm and the randomised rounding gives, in
expectation, a 3/4-approximation for Max-SAT.

University of Sydney

Page 36

Theorem. The “best-of-two” approach which

- . 2 runs both the naive randomised algorithm and
qu SAT' an we dO be"er ¢ the randomised roundin%givessl&_il_n expectation, a
ax-SAT.

[P[mam(wvob[x)/ wpb(j'))] > ! E{mq,o (=) :—r\raob(;’)j
:Zﬁpl (2
.,li(a+b){m\poC(cxlb)({a+l>) 2, 5 2° >J‘ (V (_5,>)ZJ]

3 /4-approximation for

1
Cﬁ';l_"" 2. ! J
%(Q)> % > _.§ fz‘ ‘5[01)
V0 e§502) ‘*

PPPPPP

Recap

?mw%v-p ((wj' na“ weu%)

\l\/& emaur ewW‘ l‘o S&b tﬂ;,yn

ILPs ang Mmow Q""""K‘*’o

We Jﬂé gmm/\ew—

Pﬂp}QWé} ”—PMQ“’ Lp;@: u”m ed ——aob’ NnQu(z)jaJ

PPPPPP

	Slide 1
	Slide 2: COMPx270: Randomised and Advanced Algorithms Lecture 10: Linear Programming and Randomised Rounding
	Slide 3: Some housekeeping
	Slide 4: Assignment 2: what was this about?
	Slide 5: Assignment 2: what was this about?
	Slide 6: Assignment 2: what was this about?
	Slide 7: This week: Linear Programming, and Randomised Rounding
	Slide 8: Linear Programming
	Slide 9: Linear Programming
	Slide 10: Linear Programming
	Slide 11: Linear Programming
	Slide 12: Integer Linear Programming
	Slide 13: Integer Linear Programming: st-Min-CUT
	Slide 14: Integer Linear Programming: st-Min-CUT
	Slide 15: LP Relaxation: st-Min-CUT
	Slide 16: LP Relaxation: st-Min-CUT
	Slide 17: LP Relaxation: st-Min-CUT
	Slide 18: LP Rounding!
	Slide 19: LP Rounding: st-Min-CUT
	Slide 20: LP Rounding: st-Min-CUT
	Slide 21: LPand ILP in practice
	Slide 22: ILP+LP Relaxation+Rounding: Max-SAT
	Slide 23: ILP+LP Relaxation+Rounding: Max-SAT
	Slide 24: ILP+LP Relaxation+Rounding: Max-SAT
	Slide 25: ILP+LP Relaxation+Rounding: Max-SAT
	Slide 26: ILP+LP Relaxation+Rounding: Max-SAT
	Slide 27: ILP+LP Relaxation+Rounding: Max-SAT
	Slide 28: ILP+LP Relaxation+Rounding: Max-SAT
	Slide 29: ILP+LP Relaxation+Rounding: Max-SAT
	Slide 30: ILP+LP Relaxation+Rounding: Max-SAT
	Slide 31: ILP+LP Relaxation+Rounding: Max-SAT
	Slide 32: ILP+LP Relaxation+Rounding: Max-SAT
	Slide 33: ILP+LP Relaxation+Rounding: Max-SAT
	Slide 34: ILP+LP Relaxation+Rounding: Max-SAT
	Slide 35: Max-SAT: Can we do better?
	Slide 36: Max-SAT: Can we do better?
	Slide 37: Max-SAT: Can we do better?
	Slide 38: Recap

