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An experiment [

Shuffle a deck of cards: then go through them in order. How many
times do two consecutive cards have the same suit?



An experiment [

Shuffle a deck of cards: then go through them in order. How many
times do two consecutive cards have the same suit?



An experiment [

Shuffle a deck of cards: then go through them in order. How many
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An experiment [

Shuffle a deck of cards: then go through them in order. How many
times do two consecutive cards have the same suit in expectation?



An experiment [

Shuffle a deck of cards: then go through them in order. How many
times do two consecutive cards have the same suit in expectation?

| Import numpy as np

2| import random

|deck = 13%['S", 'H", 'D", "C']

.| consecutives []

;| for _ 1in range(50000):

shuffled_deck = random.sample(deck, len(deck));

consecutives += [np.sum([shuffled_deck[1] == shuffled_deck[i+1] for 1
in range(len(deck)-1)])]

sl print(“"Empirical mean: %f" % np.mean(consecutives))




An experiment [

Shuffle a deck of cards: then go through them in order. How many
times do two consecutive cards have the same suit in expectation?
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An experiment [

Shuffle a deck of cards: then go through them in order. How many
times do two consecutive cards have the same suit in expectation?

Can we prove it?



An experiment [

Shuffle a deck of cards: then go through them in order. How many
times do two consecutive cards have the same suit in expectation?

Theorem (Linearity of expectation).

E[X + Y] = E|X] + E[Y]

No assumption of independence, or anything. Surprisingly useful!



An experiment [

Shuffle a deck of cards: then go through them in order. How many
times do two consecutive cards have the same suit in expectation?



Randomised algorithms

Standard algorithms: “recipes.” Input = ingredients, output = @ :
Given input, follow steps, get @
Given same ingredients, get same @



Randomised algorithms

Standard algorithms: “recipes.” Input = ingredients, output = cake.
* Given input, follow steps, get @
* Given same ingredients, get same @

Randomised algorithms: “recipes with randomness” Input =
Ingredients, output = cake , randomness = unpredictable oven

* Given input, follow steps, get @
* Given same ingredients, get @



Randomised algorithms

Randomized algorithms are algorithms where the behaviour doesn’t
depend solely on the input. It also depends (in part) on random
choices or the values of a number of random bits.

Important distinctions: what is (and isn’t) a randomized algo

- the input is assumed to be “random” X

- we average the time complexity over many calls to the algo X
- the input is worst-case, but the algo makes random choices



Randomised algorithms

(cartoon definition)



Randomised algorithms, Monte Carlo, Las Vegas

(details)



Why randomisation? ¢

* Avoid pathological corner cases

* Get approximate result very fast

* Avoid predictable outcomes

* Get faster, simpler algorithms

* Break ties or bypass “impossibility results”
* Cryptography! Privacy!



Why not randomisation?

* Randomness is not always good or desirable
* Random bits don’t grow on trees!
* Bad random bits? Bad outputs.



secrets — Generate secure random numbers for
managing secrets

Added in version 3.6.

Source code: Lib/secrets.py

The secrets module is used for generating cryptographically strong random numbers suitable for managing

data such as passwords, account authentication, security tokens, and related secrets.

In particular, secrets should be used in preference to the default pseudo-random number generator in the

random module, which is designed for modelling and simulation, not security or cryptography.




Get faster, simpler algorithms? (An example)

Given an n-bit integer, decide whether it is a prime number.
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There exists a polynomial-time algorithm! Since 2002 (AKS).
Runs in time 0(n'?). Improved to O(n®).



Get faster, simpler algorithms? (An example)

Given an n-bit integer, decide whether it is a prime number.

There exists a polynomial-time algorithm! Since 2002 (AKS).
Runs in time 0(n'?). Improved to O(n®).

The algorithm was the first one which is able to determine In
polynomial time, whether a given number is prime or composite and
this without relying on mathematical conjectures such as the
generalized Riemann hypothesis. [...] In 2006 the authors received
both the Godel Prize and Fulkerson Prize for their work. (Wikipedia)



Get faster, simpler algorithms? (An example)
Given an n-bit integer, decide whether it is a prime number.

There exists a randomised algorithm! Since 1980 (Miller-Rabin).
Runs in time 0(n?).

After all... why not?

Why not'a much faster algorithm?



Now, QuickSort

Given an array A of n distinct numbers, sort A.

Theorem. There are deterministic sorting algorithms with running
time O(nlogn).



Now, QuickSort

Given an array A of n distinct numbers, sort A.

Theorem. There are deterministic sorting algorithms with running
time O(nlogn).

Theorem. Every (comparison-based) sorting algorithm must have
worst-case running time Q(nlogn).



Now, QuickSort

Require: Input array A of size n

1: if n < 1 then return A

2. Select an index 1 < i < n, and let p <— Ali| be the pivot

3: Partition A into 3 subarrays: A; (elements smaller than p), A,
(equal to p), and A3 (greater than p) > O(n) time

4: Recursively call QuickSort on A; and Aj to sort them

5: Merge the (sorted) Aq, Ay, Az into A > O(n) time

6: return A




Now, QuickSort

Given an array A of n distinct numbers, sort A.

Theorem. QuickSort is a deterministic sorting algorithm with running
time 0(n?).

(But it is simple, and nice, and does well in practice.)



Randomised QuickSort

Require: Input array A of size n

1: if n < 1 then return A

2. Select an index 1 < i < n, and let p <— Ali| be the pivot

3: Partition A into 3 subarrays: A; (elements smaller than p), A,
(equal to p), and A3 (greater than p) > O(n) time

4: Recursively call QuickSort on A; and Aj to sort them

5: Merge the (sorted) Aq, Ay, Az into A > O(n) time

6: return A




Now, QuickSort
Given an array A of n distinct numbers, sort A.

Theorem. Randomised QuickSort is a sorting algorithm with
expected running time O(nlogn).

(And it is simple, and still nice, and still does well in practice.)



Now, QuickSort

(proof)



(proof)



Recap, and looking forward

* Randomised, linearity of expectation, applications
 Concentration bounds, probability amplification, median trick
 Coupon Collector, Load Balancing, Power of Two Choices
 Derandomisation: Max-Cut, Method of Conditional Expectations
* Randomized Min-Cut (Karger’s algorithm)

* Probabilistic data structures |: Hashing and Bloom filters
 Probabilistic data structures |l: Johnson-Lindenstrauss, LSH
 Streaming and Sketching I: definitions, examples, frequency estimation
* Streaming and Sketching Il: CountSketch, Count—-min Sketch

* Linear Programming and Randomised Rounding

* Embeddings: FRT algorithm, and applications

* Sampling and Counting



To conclude: something completely different!

If Xis a non-negative integer-valued random variable, then

E[X] = i}nPr[X— n|= ilPr[X > 1|

(This is useful!) See tutorial.
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