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An experiment 
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times do two consecutive cards have the same suit?
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An experiment 

Shuffle a deck of cards: then go through them in order. How many 
times do two consecutive cards have the same suit?

4♡, 3♡, 8 , 2 , 3 , 10♡, 8♢, 7 , K♡, 5♢, 8♡, J♡, 9 , 5 , J , 2♡, 
Q , 2 , 10 , 6 , 6 , 5♡, 4 , 9 , Q♢, 8 , 6♢, 10♢, 7 , J , K , 4♢, 
K♢, K , A♢, A , A , 4 , A♡, 3 , 9♢, 3♢, J♢, 9♡, Q♡, Q , 2♢, 10 , 
5 , 7♢, 6♡, 7♡
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Can we prove it?



An experiment 

Shuffle a deck of cards: then go through them in order. How many 
times do two consecutive cards have the same suit in expectation?

Theorem (Linearity of expectation). 

𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼[𝑌]

No assumption of independence, or anything. Surprisingly useful!



An experiment 

Shuffle a deck of cards: then go through them in order. How many 
times do two consecutive cards have the same suit in expectation?



Randomised algorithms

Standard algorithms: “recipes.” Input = ingredients, output = .
Given input, follow steps, get .
Given same ingredients, get same .



Randomised algorithms

Standard algorithms: “recipes.” Input = ingredients, output = cake .
• Given input, follow steps, get .
• Given same ingredients, get same .

Randomised algorithms: “recipes with randomness” Input = 
ingredients, output = cake , randomness = unpredictable oven
• Given input, follow steps, get .
• Given same ingredients, get .



Randomised algorithms

Randomized algorithms are algorithms where the behaviour doesn’t 
depend solely on the input. It also depends (in part) on random 
choices or the values of a number of random bits. 

Important distinctions: what is (and isn’t) a randomized algo 
- the input is assumed to be “random” 
- we average the time complexity over many calls to the algo 
- the input is worst-case, but the algo makes random choices 



Randomised algorithms

(cartoon definition)



Randomised algorithms, Monte Carlo, Las Vegas

(details)



Why randomisation? 

• Avoid pathological corner cases
• Get approximate result very fast
• Avoid predictable outcomes
• Get faster, simpler algorithms
• Break ties or bypass “impossibility results”
• Cryptography! Privacy!



Why not randomisation? 

• Randomness is not always good or desirable
• Random bits don’t grow on trees!
• Bad random bits? Bad outputs.





Get faster, simpler algorithms? (An example)

Given an n-bit integer, decide whether it is a prime number.
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Runs in time ෨𝑂 𝑛12 . Improved to ෨𝑂 𝑛6 . 



Get faster, simpler algorithms? (An example)

Given an n-bit integer, decide whether it is a prime number.

There exists a polynomial-time algorithm! Since 2002 (AKS).
Runs in time ෨𝑂 𝑛12 . Improved to ෨𝑂 𝑛6 . 

The algorithm was the first one which is able to determine in 
polynomial time, whether a given number is prime or composite and 
this without relying on mathematical conjectures such as the 
generalized Riemann hypothesis. […] In 2006 the authors received 
both the Gödel Prize and Fulkerson Prize for their work. (Wikipedia)



Get faster, simpler algorithms? (An example)

Given an n-bit integer, decide whether it is a prime number.

There exists a randomised algorithm! Since 1980 (Miller-Rabin).  
Runs in time ෨𝑂 𝑛2 .



Now, QuickSort

Given an array A of n distinct numbers, sort A.

Theorem. There are deterministic sorting algorithms with running 
time 𝑂(𝑛 log 𝑛) .



Now, QuickSort

Given an array A of n distinct numbers, sort A.

Theorem. There are deterministic sorting algorithms with running 
time 𝑂(𝑛 log 𝑛) .

Theorem. Every (comparison-based) sorting algorithm must have 
worst-case running time Ω(𝑛 log 𝑛) .



Now, QuickSort



Now, QuickSort

Given an array A of n distinct numbers, sort A.

Theorem. QuickSort is a deterministic sorting algorithm with running 
time 𝑂 𝑛2 .

(But it is simple, and nice, and does well in practice.)



Randomised QuickSort



Now, QuickSort

Given an array A of n distinct numbers, sort A.

Theorem. Randomised QuickSort is a sorting algorithm with 
expected running time 𝑂 𝑛 log 𝑛 .

(And it is simple, and still nice, and still does well in practice.)



Now, QuickSort

(proof)



(proof)



Recap, and looking forward

• Randomised, linearity of expectation, applications
• Concentration bounds, probability amplification, median trick
• Coupon Collector, Load Balancing, Power of Two Choices
• Derandomisation: Max-Cut, Method of Conditional Expectations 
• Randomized Min-Cut (Karger’s algorithm) 
• Probabilistic data structures I: Hashing and Bloom filters
• Probabilistic data structures II: Johnson-Lindenstrauss, LSH 
• Streaming and Sketching I: definitions, examples, frequency estimation
• Streaming and Sketching II: CountSketch, Count–min Sketch
• Linear Programming and Randomised Rounding
• Embeddings: FRT algorithm, and applications
• Sampling and Counting



To conclude: something completely different!

If X is a non-negative integer-valued random variable, then

(This is useful!) See tutorial.
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