
COMMONWEALTH OF AUSTRALIA

Copyright Regulations 1969

WARNING

 This material has been reproduced and communicated to you by or on
behalf of the University of Sydney pursuant to Part VB of the Copyright Act
1968 (the Act). The material in this communication may be subject to
copyright under the Act. Any further copying or communication of this
material by you may be the subject of copyright protection under the Act.

Do not remove this notice.

COMPx270: Randomised and
Advanced Algorithms
Lecture 1: Randomness,

Probability, and Algorithms

Clément Canonne

School of Computer Science

An experiment

Shuffle a deck of cards: then go through them in order. How many
times do two consecutive cards have the same suit?

An experiment

Shuffle a deck of cards: then go through them in order. How many
times do two consecutive cards have the same suit?

An experiment

Shuffle a deck of cards: then go through them in order. How many
times do two consecutive cards have the same suit?

4♡, 3♡, 8 , 2 , 3 , 10♡, 8♢, 7 , K♡, 5♢, 8♡, J♡, 9 , 5 , J , 2♡,
Q , 2 , 10 , 6 , 6 , 5♡, 4 , 9 , Q♢, 8 , 6♢, 10♢, 7 , J , K , 4♢,
K♢, K , A♢, A , A , 4 , A♡, 3 , 9♢, 3♢, J♢, 9♡, Q♡, Q , 2♢, 10 ,
5 , 7♢, 6♡, 7♡

An experiment

Shuffle a deck of cards: then go through them in order. How many
times do two consecutive cards have the same suit in expectation?

An experiment

Shuffle a deck of cards: then go through them in order. How many
times do two consecutive cards have the same suit in expectation?

An experiment

Shuffle a deck of cards: then go through them in order. How many
times do two consecutive cards have the same suit in expectation?

An experiment

Shuffle a deck of cards: then go through them in order. How many
times do two consecutive cards have the same suit in expectation?

Can we prove it?

An experiment

Shuffle a deck of cards: then go through them in order. How many
times do two consecutive cards have the same suit in expectation?

Theorem (Linearity of expectation).

𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼[𝑌]

No assumption of independence, or anything. Surprisingly useful!

An experiment

Shuffle a deck of cards: then go through them in order. How many
times do two consecutive cards have the same suit in expectation?

Randomised algorithms

Standard algorithms: “recipes.” Input = ingredients, output = .
Given input, follow steps, get .
Given same ingredients, get same .

Randomised algorithms

Standard algorithms: “recipes.” Input = ingredients, output = cake .
• Given input, follow steps, get .
• Given same ingredients, get same .

Randomised algorithms: “recipes with randomness” Input =
ingredients, output = cake , randomness = unpredictable oven
• Given input, follow steps, get .
• Given same ingredients, get .

Randomised algorithms

Randomized algorithms are algorithms where the behaviour doesn’t
depend solely on the input. It also depends (in part) on random
choices or the values of a number of random bits.

Important distinctions: what is (and isn’t) a randomized algo
- the input is assumed to be “random”
- we average the time complexity over many calls to the algo
- the input is worst-case, but the algo makes random choices

Randomised algorithms

(cartoon definition)

Randomised algorithms, Monte Carlo, Las Vegas

(details)

Why randomisation?

• Avoid pathological corner cases
• Get approximate result very fast
• Avoid predictable outcomes
• Get faster, simpler algorithms
• Break ties or bypass “impossibility results”
• Cryptography! Privacy!

Why not randomisation?

• Randomness is not always good or desirable
• Random bits don’t grow on trees!
• Bad random bits? Bad outputs.

Get faster, simpler algorithms? (An example)

Given an n-bit integer, decide whether it is a prime number.

Get faster, simpler algorithms? (An example)

Given an n-bit integer, decide whether it is a prime number.

There exists a polynomial-time algorithm! Since 2002 (AKS).
Runs in time ෨𝑂 𝑛12 . Improved to ෨𝑂 𝑛6 .

Get faster, simpler algorithms? (An example)

Given an n-bit integer, decide whether it is a prime number.

There exists a polynomial-time algorithm! Since 2002 (AKS).
Runs in time ෨𝑂 𝑛12 . Improved to ෨𝑂 𝑛6 .

The algorithm was the first one which is able to determine in
polynomial time, whether a given number is prime or composite and
this without relying on mathematical conjectures such as the
generalized Riemann hypothesis. […] In 2006 the authors received
both the Gödel Prize and Fulkerson Prize for their work. (Wikipedia)

Get faster, simpler algorithms? (An example)

Given an n-bit integer, decide whether it is a prime number.

There exists a randomised algorithm! Since 1980 (Miller-Rabin).
Runs in time ෨𝑂 𝑛2 .

Now, QuickSort

Given an array A of n distinct numbers, sort A.

Theorem. There are deterministic sorting algorithms with running
time 𝑂(𝑛 log 𝑛) .

Now, QuickSort

Given an array A of n distinct numbers, sort A.

Theorem. There are deterministic sorting algorithms with running
time 𝑂(𝑛 log 𝑛) .

Theorem. Every (comparison-based) sorting algorithm must have
worst-case running time Ω(𝑛 log 𝑛) .

Now, QuickSort

Now, QuickSort

Given an array A of n distinct numbers, sort A.

Theorem. QuickSort is a deterministic sorting algorithm with running
time 𝑂 𝑛2 .

(But it is simple, and nice, and does well in practice.)

Randomised QuickSort

Now, QuickSort

Given an array A of n distinct numbers, sort A.

Theorem. Randomised QuickSort is a sorting algorithm with
expected running time 𝑂 𝑛 log 𝑛 .

(And it is simple, and still nice, and still does well in practice.)

Now, QuickSort

(proof)

(proof)

Recap, and looking forward

• Randomised, linearity of expectation, applications
• Concentration bounds, probability amplification, median trick
• Coupon Collector, Load Balancing, Power of Two Choices
• Derandomisation: Max-Cut, Method of Conditional Expectations
• Randomized Min-Cut (Karger’s algorithm)
• Probabilistic data structures I: Hashing and Bloom filters
• Probabilistic data structures II: Johnson-Lindenstrauss, LSH
• Streaming and Sketching I: definitions, examples, frequency estimation
• Streaming and Sketching II: CountSketch, Count–min Sketch
• Linear Programming and Randomised Rounding
• Embeddings: FRT algorithm, and applications
• Sampling and Counting

To conclude: something completely different!

If X is a non-negative integer-valued random variable, then

(This is useful!) See tutorial.

	Slide 1
	Slide 2: COMPx270: Randomised and Advanced Algorithms Lecture 1: Randomness, Probability, and Algorithms 🎲
	Slide 3: An experiment 🃏
	Slide 4: An experiment 🃏
	Slide 5: An experiment 🃏
	Slide 6: An experiment 🃏
	Slide 7: An experiment 🃏
	Slide 8: An experiment 🃏
	Slide 9: An experiment 🃏
	Slide 10: An experiment 🃏
	Slide 11: An experiment 🃏
	Slide 12: Randomised algorithms
	Slide 13: Randomised algorithms
	Slide 14: Randomised algorithms
	Slide 15: Randomised algorithms
	Slide 16: Randomised algorithms, Monte Carlo, Las Vegas
	Slide 17: Why randomisation? 🎲
	Slide 18: Why not randomisation? 🎲
	Slide 19
	Slide 20: Get faster, simpler algorithms? (An example)
	Slide 21: Get faster, simpler algorithms? (An example)
	Slide 22: Get faster, simpler algorithms? (An example)
	Slide 23: Get faster, simpler algorithms? (An example)
	Slide 24: Now, QuickSort
	Slide 25: Now, QuickSort
	Slide 26: Now, QuickSort
	Slide 27: Now, QuickSort
	Slide 28: Randomised QuickSort
	Slide 29: Now, QuickSort
	Slide 30: Now, QuickSort
	Slide 31
	Slide 32: Recap, and looking forward
	Slide 33: To conclude: something completely different!

