
Lecture 9: Streaming and Sketching II

We will follow for this chapter the (excellent) lecture notes
by Amit Chakrabarti [AC], available at https://www.cs.
dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf.

Sketching
Chapter 5.2 of [AC]

A sketching algorithm is the response to the following very natural
question:

If I run two instances of a streaming algorithm for problem P on a
stream σ1 and on a stream σ2, can I combine their outputs to get the
same result as if I had run my algorithm for P on the stream σ1 ◦ σ2?

This sounds very desirable, as this allows to stop an algorithm,
distribute it across multiple servers or subsets of a stream, and still
be able to recombine everything.

What is even more appealing is a linear sketching algorithm,
where the (sketch) output of the algorithm is just a linear function
of the input stream (into a lower-dimensional space), and where
“combining their outputs” just means. . . summing them up.

Back to Frequent Elements!

Remember that in the previous lecture, we saw the Misra–Gries
algorithm which allowed us to compute deterministically, in one
pass, an additive approximation of all the n frequencies of a given
stream σ:

f j − m ≤ f j ≤ f j , for all j ∈ [n]

using space s = O(log(mn)/). We will see in the tutorial that this
is actually already a sketching algorithm!

It suffers from two possible issues, however: rst, it only works
in the “cash register” streaming model, where items come in the Cash register model: “numbers go up

and only up”stream but are never removed (“numbers can only go up”). Second,
the approximation guarantee it provides is rather weak: since

∥ f ∥1 = f 1 + f 2 + · · · + f n = m

110 comp45270: randomised and advanced algorithms

for every stream σ, you can think of it as providing an ℓ1-estimate
of the stream:

−∥ f ∥1 ≤ f j − f j ≤ 0 for all j ∈ [n] (60)

which implies
∥f − f ∥ ≤ ∥ f ∥1 (61)

We could ask for other types of approximation: for instance, what if
our error was with respect to another norm, say, ℓ2? ℓp? Recall that ∥x∥2 ≤ ∥x∥1 for every

vector x ∈ Rd, so one approximation
implies the other.

Count-Sketch
Chapter 5.3 of [AC]

We start with the CountSketch algorithm, due to Charikar, Chen
and Farach–Colton, which works in the turnstile streaming model Turnstile model: “numbers go up, or

down”and provides exactly that: an ℓ2 guarantee.
Algorithm 19: The CountSketch
algorithmInput: Parameter  ∈ (0, 1]

1: Set k ← O(1/2), and initialize an array C of size k to zero
2: Pick h : [n] → [k] from a strongly universal hashing family
3: Pick g : [n] → −1, 1 from a strongly universal hashing family
4: for all 1 ≤ i ≤ m do
5: Get item ai = (j, c) ∈ [n]× −B, . . . , B ▷ Assume B = O(1)
6: C[h(j)] ← C[h(j)] + c · g(j)

Output: On query j ∈ [n], return f j ← g(j) · C[h(j)]

Fact 43.1. CountSketch is a linear sketching algorithm, provided the Can you see why?

sketches C1,C2 are built using the same hash functions h, g.

Some notation: for a vector x ∈ Rn and j ∈ [n], denote by
x−j ∈ Rn the same vector, but with j-coordinate set to 0.

Theorem 44. The (median trick version of the) CountSketch algo-
rithm is a randomised one-pass sketching algorithm which, for any given
parameters ,  ∈ (0, 1], provides a (succinctly represented) estimate f of
frequency vector f of the stream such that, for every j ∈ [n]

Pr
  f j − f j

 ≤ ∥ f−j∥2

≥ 1− 

with space complexity

s = O


log n+
1
2

logm

log

1



= O


log(nm)

2


log

1



.

To compare it to Eq. (61), we obtain the following:

Corollary 44.1. The (median trick version of the) CountSketch
algorithm is a randomised one-pass sketching algorithm which, for any
given parameters ,  ∈ (0, 1], provides a (succinctly represented) estimate
f of frequency vector f of the stream such that

Pr

∥ f − f ∥ ≤ ∥ f ∥2


≥ 1− 

with space complexity

s = O

log(nm)

2
log

n



.

lecture 9: streaming and sketching ii 111

Proof of Theorem 44. As in previous arguments, it sufces to
establish the theorem for constant error probability, as the median
trick will then allow us to amplify the success probability to 1−  at
the cost of a O(log(1/)) in the space complexity.

To begin, note that the space requirement comes from storing
(1) the two hash functions h, g, and (2) an array of k values, each
between −B · m and B · m. Assuming we are using “good” (that
is, small enough) hash families such as the ones seen earlier in the
course, the total is

s = O(max(log n, log k)) + O(log n) + O(k · log(Bm))

= O

log n + log

1

+

log B + logm
2



= O

log n +

logm
2



(since we assume B = O(1)).

That was space. For correctness, the use of strongly universal
hash families (i.e., pairwise independent) hints at a variance-based
argument, and so a natural idea is to compute the expectation and
variance of each f j in view of applying Chebyshev’s inequality.
Let’s proceed: x any j ∈ [n].

• Writing ai = (ji , ci) for each item ai of the stream, observe that
item ai affects the value of f j if, and only if, h(ji) = h(j) (since
then C [h(j)] is modied when processing item ai). Furthermore,
for any j ∈ [n], the contribution of j to the sketch C is limited to
the cell C [h(j)], and is equal to its frequency f j , since

f j =
m

∑
i=1

ci1ji= j

As a result, the expectation of f j can be computed as

E

f j

= E [g(j) · C [h(j)]]

= E


g(j)

m

∑
i=1

1h(ji)=h(j)ci · g(ji)


= E


g(j) ∑

j ′∈[n]
1h(j ′)=h(j) · g(j ′) f j ′




= E


g(j)2 f j + ∑

j ′∈[n]\ j
1h(j ′)=h(j) · g(j)g(j ′) f j ′




112 comp45270: randomised and advanced algorithms

By linearity of expectation, and since g(j)2 = 1, we get

E

f j

= f j + ∑

j ′∈[n]\ j
E

1h(j ′)=h(j)g(j)g(j

′)

· f j ′

(g(j)2 = 1, linearity of expectation)

= f j + ∑
j ′∈[n]\ j

E

1h(j ′)=h(j)


· E


g(j)g(j ′)


· f j ′

(h, g are independent)

= f j + ∑
j ′∈[n]\ j

Pr
h


h(j ′) = h(j)


· E [g(j)]E


g(j ′)


· f j ′

(pairwise independence of g)

= f j + ∑
j ′∈[n]\ j

Pr
h


h(j ′) = h(j)


· 0 · 0 · f j ′

(g(j), g(j ′) are uniformly distributed)

= f j . (62)

(In the end we invoked the fact, proven in the tutorials, that
drawing g from a strongly universal hash family implies that
g(x) is uniformly distributed, for every xed x.) Great: f j has
the right expectation.

• In order to give an upper bound on its variance Var[f j] =

E

f 2j


− E


f j
2
, we expand the square to compute the rst

term, using the same properties of h and g:

E

f 2j


= E





g(j) ∑

j ′∈[n]
1h(j ′)=h(j) · g(j ′) f j ′




2



= E


g(j)2 ∑

j ′ , j′′∈[n]
1h(j ′)=h(j ′′)=h(j) · g(j ′) · g(j ′′) f j ′ f j ′′




= ∑
j ′ , j′′∈[n]

E

1h(j ′)=h(j ′′)=h(j) · g(j ′) · g(j ′′)


f j ′ f j ′′

(g(j)2 = 1 and linearity of expectation)

= ∑
j ′ , j ′′∈[n]

E

1h(j ′)=h(j ′′)=h(j) · g(j ′) · g(j ′′)


f j ′ f j ′′

(g(j)2 = 1 and linearity of expectation)

= ∑
j ′ , j′′∈[n]

Pr

h(j ′) = h(j ′′) = h(j)


· E


g(j ′) · g(j ′′)


f j ′ f j ′′

(h, g are independent)

= ∑
j ′ , j′′∈[n]

Pr

h(j ′) = h(j ′′) = h(j)


· 1j ′= j ′′ · f j ′ f j ′′

(as before, E [g(j ′) · g(j ′′)] = 0 if j ′ ̸= j ′′)

= ∑
j ′∈[n]

Pr

h(j ′) = h(j)


· f 2j ′

= 1 · f 2j + ∑
j ′∈[n]\ j

1
k
· f 2j ′

= f 2j +
∥ f − j∥22

k
,

lecture 9: streaming and sketching ii 113

where the second-to-last step comes from drawing h from a
strongly independent hash family: of course, if j = j ′ then
h(j) = h(j ′) (always), but otherwise this happens with probabil-
ity 1/k since h(j ′) is uniformly distributed. This tells us that

Var[f j] = E

f 2j


− E


f j
2

= f 2j +
∥ f − j∥22

k
− f 2j

=
∥ f − j∥22

k
. (63)

Having the expectation and variance, we can conclude, by Cheby-
shev’s inequality, that, for any xed j ∈ [n],

Pr
 f j − f j

 > ∥ f − j∥2

= Pr

 f j − E

f j
 > ∥ f − j∥2



(Eq. (62))

≤ Var[f j]
2∥ f − j∥22

=
1
k2

(Eq. (63))

≤ 1
3

the last inequality for any choice of k ≥

3/2


.

Count-Min-Sketch
Chapter 5.4 of [AC]

Let us now cover a different (but similar-looking) algorothm with
different guarantees, due to Cormode and Muthukrishnan, stated
here in the cash register model: CountMinSketch.

Algorithm 20: The CountMinSketch
algorithmInput: Parameters ,  ∈ (0, 1]

1: Set k ← O(1/) and T ← O(log(1/)), and initialize a two-
dimensional array C of size T × k to zero

2: Pick h1 , . . . , hT : [n] → [k] independently from a strongly uni-
versal hashing family

3: for all 1 ≤ i ≤ m do
4: Get item ai = (j, c) ∈ [n] × 0, . . . , B ▷ Assume B = O(1)
5: for all 1 ≤ t ≤ T do
6: C [t][ht(j)] ← C [t][ht(j)] + c

Output: On query j ∈ [n], return f j ← min1≤t≤T C [t][ht(j)]

Can you see why?
Fact 44.1. CountMinSketch is a linear sketching algorithm, provided
the sketches C1 , C2 are built using the same hash functions h1 , . . . , hT.

No median trick! The “probability
amplication” is built-in, can you see
where?Theorem 45. The CountMinSketch algorithm is a randomised one-

pass sketching algorithm which, for any given parameters ,  ∈ (0, 1],

114 comp45270: randomised and advanced algorithms

provides a (succinctly represented) estimate f of frequency vector f of the
stream such that, for every j ∈ [n]

Pr
 f j − f j

 ≤ ∥ f − j∥1

≥ 1 − 

with space complexity

s = O

log(nm)


log

1



.

(Moreover, f j is always an overestimate: f j ≥ f j for all j ∈ [n].)

But. . . is that not basically a similar guarantee as the Misra–
Gries algorithm, but strictly worse? More space, and now it has a
probability of failure!

True, but compared to the Misra–Gries algorithm,

• CountMinSketch is much faster and simpler

• It provides a linear sketch, much easier to combine

• It can be extended to the strict turnstile model.

See tutorial for this last point!

Proof of Theorem 45 (Sketch). The key steps of the analysis are as
follows:

• the space complexity is

s = T · (O(max(log n, log k)) + O(k · log(Bm)))

= O(Tk log(nm))

accounting for the T hash functions and storing T arrays of k
numbers between 0 and Bm.

• In the cash register model, each update in Line 6 is a non-
negative number: and so, for every 1 ≤ t ≤ T and every j ∈ [n]

C [t][ht(j)] = f j +
contributions from other

elements j ′ with
ht (j ′)=ht (j)

≥ f j

and so
f j = min

1≤t≤T
C [t][ht(j)] ≥ f j .

• Fix any 1 ≤ t ≤ T. For every j ∈ [n],

E [C [t][ht(j)]] = E


 f j + ∑

j ′∈[n]\ j
1h(j ′)=h(j) f j ′




= f j + ∑
j ′∈[n]\ j

Pr

h(j ′) = h(j)


f j ′

= f j +
1
k ∑

j ′∈[n]\ j
f j ′

= f j +
∥ f − j∥1

k

lecture 9: streaming and sketching ii 115

using that h is a strongly universal family, and therefore h(j ′) is
uniformly distributed in [[k] for any j ′ .

• For any xed j ∈ [n] and 1 ≤ t ≤ T, let Xt, j := E [C [t][ht(j)]] −
f j ≥ 0. We just showed that

E

Xt, j


=

∥ f − j∥1
k

.

By Markov’s inequality (importantly, using Xt, j ≥ 0 as proven
above), this implies that

Pr

f j − f j ≥ ∥ f − j∥1


≤ 1

k
≤ 1

2
(⋆)

the last inequality as long as k ≥ 2/.

• Fix j ∈ [n]. We want to bound the quantity

Pr

f j − f j  ≥ ∥ f − j∥1


= Pr


f j − f j ≥ ∥ f − j∥1


= Pr


min
1≤t≤T

Xj,t ≥ ∥ f − j∥1


A nice fact about the minimum of T random variables is that for
the minimum to be greater than some value, all T of them need to
be greater than this value. And since our T random variables are
independent, the expression simplies a lot:

Pr


min
1≤t≤T

Xj,t ≥ ∥ f − j∥1

= Pr


∀1 ≤ t ≤ T , Xj,t ≥ ∥ f − j∥1



=
T

∏
t=1

Pr

Xj,t ≥ ∥ f − j∥1



(by independence)

≤
T

∏
t=1

1
2
=

1
2T

(by (⋆))

≤  (by our choice of T)

This proves the theorem.

