
Lecture 8: Streaming and Sketching I

“In low-space, nobody can remember your stream.”

We will follow for this chapter the (excellent) lecture notes
by Amit Chakrabarti [AC], available at https://www.cs.
dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf.

The Basic Setup

We will specically focus on one-pass algorithms, unless specied
otherwise. m denotes the length of the stream

σ = ⟨a1, . . . , am⟩

where each ai belongs to the universe X of size n. We do not im- Note that this notation is swapped
with respect to the previous lectures,
in other to match the lecture notes.

pose any bound on the time complexity of our algorithms, but we
will enforce that they use very little memory (space), with space
complexity denoted by s. We will aim for

s = o(min(m, n))

and would love to use much less, ideally

s = O(logm+ log n)

or, if not, s = poly(logm, log n). To do so, we will allow for ran-
domised algorithms and approximation algorithms, where the qual-
ity of the approximation will be controlled by a parameter  > 0,
usually thought of as an (arbitrarily) small xed constant.

The Majority Problem
Chapter 1 of [AC]

To begin, consider the (seemingly) very simple question of deciding
whether there is one element that appears at least half the time in
the stream: that is, some j ∈ [n] whose frequency fj, dened as

f j :=
m

∑
i=1

1ai=j

satises f j ≥ m
2 . This is the Majority problem: at rst glance, this Of course, there are at most two such

elements, and at most one if we dene
the question as “is there some j such
that f j > m/2?” The issue is that we
do not know a priori which one(s) of
the n elements could be the majority
element(s).

seems very easy! Yet, spending some time thinking about it, you

102 comp45270: randomised and advanced algorithms

should convince yourself than it is surprisingly non-trivial to solve
it using little memory.

The rst algorithm we will see, due to Misra and Gries 42, is
42 Jayadev Misra and David Gries.
Finding repeated elements. Sci.
Comput. Program., 2(2):143–152, 1982

quite incredible in that regard: what it does is solving, determinis-
tically, a related (and more general) version of this question, which
we will return into more detail in the next chapter: the question of
frequency estimation, which asks to approximate the frequency f j’s,
not just decide which ones are at least m/2.

Theorem 39. The Misra-Gries algorithm (Algorithm 15) is a deter-
ministic one-pass algorithm which, for any given parameter  ∈ (0, 1],
provides f̂1, . . . , f̂n of all element frequencies such that

fj − m ≤ f̂ j ≤ f j, j ∈ [n]

with space complexity s = O(log(mn)/). (In particular, it can be used
to solve the Majority problem in two passes.)

An interesting observation here is that of course the algorithm
cannot compute explicitly n values f̂1, . . . , f̂n: this by itself would
take Ω(n) space. What it does is implicitly do so, by only storing the
values f̂ j’s that are non-zero (and making sure there are very few of
them, only O(1/)). Which makes sense, since we should not have
many more non-zero estimates than this: after all, there can only be
at most 1/ element j ∈ [n] such that f j ≥ m (i.e., which appear at
least an  fraction of the time in the stream)!

Algorithm 15: The Misra-Gries
algorithm. Only store in A: if A[j] does
not exist, it is 0. Instead of a BST, one
could use a linked list, for instance:
this would have the same space com-
plexity, but a larger update time at
each step.

Input: Parameter  ∈ (0, 1]
1: A ←  ▷ Use, e.g., a self-balancing binary search tree (BST)
2: Set k ← 1/
3: for all 1 ≤ i ≤ m do
4: Get item ai = j ∈ [n]
5: if A[j] > 0 then ▷ j is in the BST
6: A[j] ← A[j] + 1
7: else if A[j] = 0 and A < k− 1 then
8: A[j] ← 1
9: else if A[j] = 0 and A = k− 1 then

10: for all j′ ∈ A do ▷ Loop over all j′ such that A[j′] > 0
11: A[j′] ← A[j′]− 1 ▷ If A[j′] reaches 0, remove it from A

Output: On query j ∈ [n], return A[j]

Proof. First, note that since A never stores more k = O(1/) ele-
ments, each of them taking O(log n + logm) bits (for the index of
the element, and its current count), the space s is bounded as

s = O

log(mn)





as claimed.

lecture 8: streaming and sketching i 103

To prove correctness, x any j ∈ [n]. Since A[j] can only be
incremented (on Line 8 or 6) when element j appears in the stream,
we have, at the end of the stream,

f̂ j = A[j] ≤ f j .

For the other inequality (the lower bound), we need to get a grasp
on the number of times A[j] is decremented, which can only hap-
pen in Line 11. Every time this line is reached, this means that
(1) nothing else happens in this step (no increment to A[j]), and
(2) exactly k − 1 other counters are decremented (in the for all
loop).

We can see (1), conceptually, as one increment to A[j] imme-
diately followed by a decrement to A[j]: thinking of it this way
allows us to say that A[j] is incremented every time j appears in
the stream – but sometimes, it is decremented immediately after as
well, and lets us combine (1) and (2) to say that every time Line 11
is reached, exactly k decrements are performed in A. Given that
every increment uniquely corresponds to one of the m steps,this
means that each execution of Line 11 corresponds to a disjoint
chunk of k steps: when the increments to the A[j ′]’s had happened.
But there are only m steps in total, so if each decrement “burns” k
of them, there can be at most m

k decrements steps! This shows that

f̂ j = A[j] ≥ f j −
m
k
,

which, given the value of k, implies f̂ j ≥ f j − m.

To see how the “In particular” statement follows, consider ap-
plying the Misra-Gries algorithm with  = 1/4, and at the end
of the rst pass considering the set S ⊆ [n] of elements for which
f̂ j ≥ 1

4m. If j∗ is a majority element, then

f̂ j ≥ f j − m ≥ 1
2
m − 1

4
m =

1
4
m ,

so j∗ ∈ S. Conversely, if j ∈ S, then

f j ≥ f̂ j ≥
1
4
m ,

and so there can be at most m
(1/4)m = 4 elements in S. So keeping

S in memory only takes 4 · O(log n) = O(log n) bits. Then, all
that remains to do is, in the second pass, count exactly the number of
times each elements j ∈ S appears, and check if that’s at least m/2.
Each such counter takes O(logm) bits, and there are only (at most)
4 counters to maintain now.

The Approximate Counting Problem
Chapter 4 of [AC]

We will describe and analyse the Morris Counter algorithm, due
to, well, Morris 43, which provides a constant-factor estimate of 43 Robert H. Morris Sr. Counting large

numbers of events in small registers.
Commun. ACM, 21(10):840–842, 1978

the number of elements of the stream: that is, an F1 estimator. Put

104 comp45270: randomised and advanced algorithms

Algorithm 16: The Morris Counter
algorithm.1: x ← 0

2: for all 1 ≤ i ≤ m do
3: Get item ai ∈ 0, 1
4: if ai = 1 then
5: ri ← Bern(1/2x) ▷ Independent of previous choices.
6: x ← x+ ri
7: return d ← 2x − 1

differently, at each time step 1 ≤ t ≤ m, we are told if some event
happened (ai = 1) or not (ai = 0): the goal is to estimate how many
events happened in total, i.e., the number d = ∑m

i=1 ai.
The space complexity is a little annoying to bound: we expect x

to never exceed log2 m, since d is at most m by denition and we
should have 2x ≈ d. But there is a very, very small chance that all
Bernoullis turn out to be 1, in which case x could become as big
as m! This would make no sense, and also mean we would need
O(logm) bits to store x, exactly what we do not want to pay. How-
ever, one can show that with overwhelming probability x remains If x ever exceeds this value, the algo-

rithm can just abort: this only adds a
vanishing small amount to the proba-
bility of error.

at most O(logm), and so the space complexity required is only
s = O(log logm).

The proof of correctness of Algorithm 16 relies on the key lemma
below, analysing the expectation and variance of d:

Lemma 39.1. The random variable d dened in Algorithm 16 satises

E

d

= d

and

Var[d] = d(d− 1)
2

Proof. Dene Ci, for 1 ≤ i ≤ m, as the value of 2x in Algorithm 16
at the end of step i; so that C0 = 20 = 1 and d = Cm − 1.

For any 1 ≤ i < m, we then have

Ci+1 =




2 · Ci if ai+1 = 1 and ri+1 = 1

Ci otherwise

which we can rewrite as Ci+1 = (1 + ai+1ri+1)Ci. Recalling that
ri+1 ∼ Bern(1/Ci) gives us

E[Ci+1  Ci] = (1+ ai+1E[ri+1  Ci]) ·Ci =


1+

ai+1

Ci


·Ci = Ci+ ai+1

and, by the Law of Total Expectation,

E[Ci+1] = E[E[Ci+1  Ci]] = E[Ci] + ai+1 .

This gives us

E[Cm] = E[C0] +
m−1

∑
i=0

(E[Ci+1]−E[Ci]) = 1+
m−1

∑
i=0

ai+1 = 1+ d

lecture 8: streaming and sketching i 105

showing that E

d


= d. The above actually showed the more
general statement that

E[Ci] = 1+
i

∑
j=1

aj, 1 ≤ i ≤ m , (59)

which we will use very soon.
To compute the variance, we similarly analyse E


C2
m

: For any

1 ≤ i < m,

E

C2
i+1

 Ci


= E


(1 + ai+1ri+1)

2
 Ci


· C2

i

=


1 +

ai+1(2 + ai+1)

Ci


· C2

i

= C2
i + ai+1(2 + ai+1)Ci

where the second equality follows from expanding the square and
computing the expectation. Again, by the Law of Total Expectation,

E

C2
i+1


= E


E

C2
i+1

 Ci


= E


C2
i


+ ai+1(2 + ai+1)E [Ci]

= E

C2
i


+ ai+1(2 + ai+1)


1 +

i

∑
j=1

aj


(By Eq. (59))

= E

C2
i


+ 3ai+1

i+1

∑
j=1

aj

where that last step is completely magical, but “immediate in hind-

sight” by checking the two possible cases: ai+1(2+ ai+1)

1 + ∑i

j=1 aj

=

3ai+1


ai+1 + ∑i

j=1 aj

for both ai+1 = 0 and ai+1 = 1. This gives

us

E

C2
m


= E


C2
0


+ 3

m−1

∑
i=0

ai+1

i+1

∑
j=1

aj = 1 + 3
m

∑
i=1

i

∑
j=1

ai a j

= 1 + 3 · 1
2





m

∑
i=1

ai

2

+
m

∑
i=1

a2i




= 1 + 3 · 1
2


d2 + d



(recalling, for the last step, that a2i = ai for all i, since ai ∈ 0, 1).
Since E [Cm]

2 = d + 1, we nally get

Var[Cm] = 1 + 3 · 1
2


d2 + d


− (d + 1)2 =

d2 − d
2

,

as claimed.

While this Θ

d2


variance by itself is not good enough to obtain

an accurate estimate with high constant probability using Cheby-
shev’s inequality, averaging k = O(1/2) independent copies of
the Morris Counter enables us to bring down the variance by this
factor, leading to a (1 + )-estimate with high (constant) probability.
Using the median trick afterwards (running T = O(log(1/))
copies of this improved-variance algorithm, and taking the median
result) gives a high-probability result, leading to the following:

106 comp45270: randomised and advanced algorithms

Theorem 40. The medians-of-means version of the Morris Counter
is a randomised one-pass algorithm which, for any given parameters
,  ∈ (0, 1], provides an estimate d of the number d of non-zero elements
of the stream such that

Pr

(1 − )d ≤ d ≤ (1 + )d


≥ 1 − 

with space complexity

s = O

log logm

2
· log 1





that is, doubly logarithmic in m.

Again, maintaining an exact counter would take O(logm)

bits: this is an exponential improvement! And yet, we can do bet-
ter. Instead of using the median-of-means technique, we can be
more careful about the algorithm itself: where we incremented x
with probability 1/2x and returned 2x − 1, we will, for a suitable
choice of  = (, ) > 0, increment it with with probability
1/((1 + )x) and return (1 + )x − 1. We will see the details in
the tutorial, leading to this (much) improved bound:

Theorem 41. The “careful” version of Morris Counter is a ran-
domised one-pass algorithm which, for any given parameters ,  ∈
(0, 1], provides an estimate d of the number d of non-zero elements of the
stream such that

Pr

(1 − )d ≤ d ≤ (1 + )d


≥ 1 − 

with space complexity

s = log logm + O

log

1

+ log

1




that is, doubly logarithmic in m and logarithmic in 1/.

The Distinct Elements Problem
Chapters 2 and 3 of [AC]

We start this section with the Tidemark algorithm, due to Alon,
Matias and Szegedy (AMS), which provides a constant-factor esti-
mate of the number of distinct elements of the stream: that is, an
F0 estimator. In this section, we dene d as this number of distinct
elements, i.e.,

d = ∑
j∈[n]

1 f j>0

In what follows, for a given positive integer k, zeros(k) denotes
the largest power of 2 which divides k, or, equivalently, the num-
ber of trailing zeroes in the binary representation of k. The space
complexity of Algorithm 17 is

s = O(log n)

as all that is needed is storing the hash function (O(log n) bits, for
a suitable strongly universal hash family) and 1 ≤ z ≤ log2 n

lecture 8: streaming and sketching i 107

Algorithm 17: The Tidemark algo-
rithm1: Pick h : [n] → [n] from a strongly universal hashing family

2: z ← 0
3: for all 1 ≤ i ≤ m do
4: Get item ai ∈ [n]
5: if zeros(h(ai)) ≥ z then
6: z ← zeros(h(ai))

7: return d ←
√
2 · 2z

(which takes O(log log n) bits). To analyse the correctness of the
algorithm (and the quality of the estimate it outputs), dene the
random variables

Yr := ∑
j∈[n]
f j>0

1zeros(h(j))≥r , r ≥ 0

(where the randomness is over the choice of the hash function h).
One can check that, by denition,

Yr ≥ 1 ⇔ z ≥ r

for every integer r ≥ 0. Moreover,

E [Yr] = ∑
j∈[n]
f j>0

Pr[zeros(h(j)) ≥ r] = ∑
j∈[n]
f j>0

1
2r

=
d
2r

where we used the fact that each h(j) is uniformly distributed to
write that Pr[zeros(h(j)) ≥ r] = Pr[2r divides h(j)] = 1

2r .
Similarly, using pairwise independence,

Var[Yr] = ∑
j∈[n]
f j>0

Var[1zeros(h(j))≥r] ≤ ∑
j∈[n]
f j>0

1
2r

=
d
2r

the inequality using Var[X] ≤ E

X2 and the fact that X2 = X

when X is an indicator random variable. Using these two facts, for
every r ≥ 0,

• Pr[z ≥ r] = Pr[Yr ≥ 1] ≤ E [Yr] =
d
2r by Markov;

• Pr[z ≤ r] = Pr[Yr+1 = 0] ≤ Var[Yr+1]

E [Yr+1]
2 ≤ 2r+1

d by Chebyshev,

using that Pr[Yr+1 = 0] ≤ Pr[Yr+1 − E [Yr+1] ≥ E [Yr+1]]. This
is all we need! Setting C := 3

√
2,

Pr

d ≥ C · d


≤ Pr


z ≥


log2(C · d/

√
2)

 
≤

√
2d

Cd
=

1
3

while

Pr

d ≤ d/C


≤ Pr


z ≤


log2(d/(

√
2C))

 
≤ 2d√

2Cd
=

1
3

Combining the above with the median trick, we readily get:

108 comp45270: randomised and advanced algorithms

Theorem 42. The (median trick version of the) Tidemark (AMS)
algorithm is a randomised one-pass algorithm which, for any given
parameter  ∈ (0, 1], provides an estimate d of the number d of distinct
elements of the stream such that, for some absolute constant C > 0,

Pr

1
C

· d ≤ d ≤ C · d

≥ 1 − 

with space complexity

s = O

log n · log 1




.

This is not bad, but can we achieve estimation factor arbitrarily
close to one, say, 1 + ? The answer is yes: the following algorithm,
due to Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan (BJKST),
does exactly that.

Algorithm 18: The BJKST algorithm
Input: Parameter  ∈ (0, 1]
1: Set k ← O(log2 n/4), T ← Θ(1/2)
2: Pick h : [n] → [n] from a strongly universal hashing family
3: Pick g : [n] → [k] from a strongly universal hashing family

4: z ← 0, B ← 
5: for all 1 ≤ i ≤ m do
6: Get item ai ∈ [n]
7: if zeros(h(ai)) ≥ z then
8: B ← B  (g(ai), zeros(h(ai)))
9: while B ≥ T do

10: z ← z + 1
11: Remove every (a, b) with b < z from B

12: return B · 2z

Theorem 43. The (median trick version of the) BJKST algorithm is a
randomised one-pass algorithm which, for any given parameters ,  ∈
(0, 1], provides an estimate d of the number d of distinct elements of the
stream such that, for some absolute constant C > 0,

Pr

(1 − ) · d ≤ d ≤ (1 + )d


≥ 1 − 

with space complexity

s = O


log n +
log(1/) + log log n

2


· log 1




.

This is pretty good, but. . . Is it optimal?

