
Lecture 7: Nearest Neighbours and dimensionality re-
duction

Last week, we focused on hash tables and Bloom lters, which
enable us to solve the dictionary problem:

Given a dataset S, subset of a very large “universe” X , how
do we quickly check if a new element x ∈ X is in the dataset?

This week, we will focus on a different, but related question,
which can be seen as a “relaxed” version of the dictionary problem.
Namely, we will not ask whether a query x is in the dataset, but in-
stead we will ask to return a point y ∈ S that is close to x – ideally,
the closest. You can see the applications of this question: (1) given
a noisy version x of an image, nd the closest picture stored in the
dataset (i.e., a “denoised” version of x); (2) given a point in a high-
dimensional space, cluster it by nding a close center; (3) given an
assignment submitted this semester, nd the most similar in the
database of assignments from previous years. . . those are only a
few examples.

To even start, we need to dene what “close” means: that is, we
need a notion of distance between elements of the universe X . This
can be weakened a little, but here we will assume X is a metric
space, and comes with a metric34 34 That is, dist(,) is non-negative,

reexive:

dist(x, y) = 0 ⇔ x = y

symmetric:

dist(x, y) = dist(y, x),

and satises the triangle inequality:

dist(x, y) ≤ dist(x, z) + dist(z, y)

for all x, y, z ∈ X .

dist : X ×X → R+ .

To give an example, think of a few metrics you most likely know or
have encountered before:

1. The Manhattan distance on X = Rd (a.k.a. the ℓ1 distance, or
taxicab distance): dist(x, y) = ∑d

i=1 xi − yi = ∥x− y∥1
2. The Euclidean distance on X = Rd (a.k.a. the ℓ2 distance):

dist(x, y) =


∑d
i=1(xi − yi)2 = ∥x− y∥2

3. The Hamming distance on X = 0, 1d: dist(x, y) = ∑d
i=1 1xi ̸=yi

Any meaningful others?
With this in hand, we can dene the problem we want to solve,

the Nearest Neighbour Problem: Nearest Neighbour (NN)

90 comp45270: randomised and advanced algorithms

Given a dataset S, subset of a very large metric space
(X , dist), how to, given a new element x ∈ X , output an el-
ement y ∈ S that minimises dist(x, y)?

As before, we will let n = S denote the current size of the
dataset (which can change as we insert or remove elements), but
instead of denoting by m the size of the universe X , we will instead
focus on high-dimensional universes such as 0, 1d or Rd, and
denote by d the dimension of the universe. So, for X = 0, 1d, we have m = 2d.

But for X = Rd, m = .

X
x

y

S

We will also for simplicity restrict ourselves to the ofine setting,
where the dataset S is not changing over time: instead, we are given
all n elements of S at once, and can spend some time preprocessing
them to create our data structure. We then only need to support the
Query operation:

Query(x): given an element x ∈ X , return an element y ∈ S
minimising dist(x, y), that is, dist(x, y) = miny′∈S dist(x, y′) .

The two main complexity measures we will seek to minimise for
our data structure are:

• Space complexity: we would like our data structure to take as little Here d takes the role of logm from the
previous lecture. Can you see why?space as possible, ideally O(nd);

• Query time: we want queries to be fast, ideally in time sublinear in
n (and “reasonable” in d). For instance, poly(d) ·O(n0.99) would
not be bad.

(if possible, we will also try to keep the preprocessing time under
control too, which is the time complexity of creating the data struc-
ture from the n elements of S). The rationale for seeking o(n),
reasonable-in-d query time is because while we think of the regime
where the data is high-dimensional (d ≫ 1), we also focus on the

lecture 7: nearest neighbours and dimensionality reduction 91

regime where the dataset is huge: n ≫ d. As a rule of thumb, you
should keep in mind “Why?” Note that for the case of

X = 0, 1d for instance, n can
never be larger than 2d. And (peeking
ahead), we will see the JL lemma,
which in some sense guarantees that
even in Euclidean space, d can be
“made” as small as O(log n).

1 ≪ d ≪ n ≪ 2d

In what follows, we will also assume that we can compute distances
efciently: specically, that dist(x, y) can be computed in time
O(d) for any two x, y ∈ X ; and that storing an element of X takes
space O(d). Let’s not get into the details of how

to actually store a value x ∈ Rd on a
computer.

Baseline. So, what can we do? The good news is that we can rela-
tively easily achieve one of the two requirements. Namely:

• There is a (deterministic) data structure for the Nearest Neigh-
bour problem using space O(nd), and query time O(nd);

• There is a (deterministic) data structure for the Nearest Neigh-
bour problem using space O(2d), and query time O(2d). We will see them in the tutorial.

The bad news is that this is essentially all that we know. That is, ev-
ery data structure (even probabilistic) we know for Nearest Neigh-

bour has either space or query complexity Ω

min(2d, nd)


in the

worst case.

Relax (the problem)! Faced with this, a natural response is to shrug
and give up. Another natural response, a few minutes later usually,
is to try and modify the problem we were aiming to solve, to see if
a weaker, “relaxed” variant could be enough (and easier). This is
the basis for the Approximate Nearest Neighbour question: instead of
asking for a point y∗ ∈ S closest to the query x ∈ X , we only ask
for a point y ∈ S that is not much further from x than y∗, i.e., is “good
enough.” Approximate Nearest Neighbour

(ANN)

Given a dataset S, subset of a very large metric space
(X , dist), how to, given a new element x ∈ X , out-
put an element y ∈ S that is within a constant factor of
miny′∈S dist(x, y′)?

Now, our data structure is parameterised by a value C > 1 (xed
at the creation of the data structure), and must support queries of
this type:

Query(x): given an element x ∈ X , return an element
y ∈ S sort-of-minimising dist(x, y), that is, dist(x, y) ≤
C ·miny′∈S dist(x, y′) .

(If we were to set C = 1, then we would be back to the Nearest
Neighbour problem.)

92 comp45270: randomised and advanced algorithms

Dimensionality reduction: the Johnson–Lindenstrauss lemma

The rst tool we will see is specic to Euclidean space (X = Rd,
dist(x, y) = ∥x− y∥2), but has applications going beyond Approx-
imate Nearest Neighbours: it is a dimensionality reduction technique
which gives a way to map points in Rd to points in Rk, for k ≪ d,
while nearly preserving all their pairwise distances. That is, the
Johnson–Lindenstrauss lemma gives an efcient, probabilistic map-
ping

Φ : Rd → Rk

where k = O(log(1/)/2) such that, for any two xed x, y ∈ Rd,

∥Φ(x)−Φ(y)∥2 = (1± )∥x− y∥2

with probability at least 1 − . This seems quite magical: for in-
stance, taking  = 0.01 and  = 1/100, this gives a mapping
from the d-dimensional Euclidean space (d is huge!) to a constant-
dimensional space which preserves the distance between any two
points of your choosing, up to a factor 1.01!

What is even better is that this Φ is not some insanely com-
plicated, cumbersome to describe and impossible to implement
random function. It is a random linear mapping, obtained by just
picking a random matrix M ∈ Rk×d with independent random
Gaussian coefcients, and setting Φ(x) = Mx. 35,36 35 William B. Johnson and Joram

Lindenstrauss. Extensions of Lipschitz
mappings into a Hilbert space. In
Conference in modern analysis and
probability (New Haven, Conn., 1982),
volume 26 of Contemp. Math., pages
189–206. Amer. Math. Soc., Providence,
RI, 1984
36 Even, even better: subsequent
work has shown how to replace
“random Gaussian coefcients” by
even simpler random coefcients (e.g.,
in −1, 0, 1 or −1, 1, then scaled)
while preserving the same guarantees.

Theorem 36 (Distributional JL Lemma). Fix any ,  ∈ (0, 1/2), and
set

k = Θ

log(1/)

2


.

Consider the random matrix M ∈ Rk×d obtained by drawing each entry
Mij independently from the Gaussian distribution N (0, 1/k). Then, for
any xed u ∈ Rd, we have

Pr
M
[(1− )∥u∥2 ≤ ∥Mu∥2 ≤ (1+ )∥u∥2] ≥ 1−  .

We will not prove the theorem in this class, but a few remarks
are in order: rst, M can be created in time O(kd) time (assuming
sampling from N (0, 1) in constant time). Second, for any x ∈ Rd

the projection Mx can be computed in time O(kd) as well.37 Third, 37 There are some improvements, such
as the Fast JL Transform, to do this even
faster.

and this is quite important for us, this implies the following corol-
lary, which we will prove and is what is commonly known as “the
JL Lemma.”

Corollary 36.1 (JL Lemma). Fix any  ∈ (0, 1/2) and n ≥ 2, and set

k = Θ

log n
2


.

Consider the random matrix M ∈ Rk×d dened in Theorem 36. Then, for
any xed set T ⊆ Rd of n elements, we have

Pr
M
[∀x, y ∈ T, (1− )∥x− y∥2 ≤ ∥Mx− My∥2 ≤ (1+ )∥x− y∥2] ≥

9
10

.

lecture 7: nearest neighbours and dimensionality reduction 93

Proof. Invoke Theorem 36 with  = 1
10(n2)

= Θ


1
n2


. Take a union

bound over all (n2) pairs of distinct x, y ∈ T, applying the theorem to
u := x− y.

What this corollary promises us is that, up to a small distortion
in the (n2) pairwise Euclidean distances of our elements, we can
replace our d-dimensional Euclidean space by a much more man-
ageable O(log n)-dimensional Euclidean space, losing essentially
nothing in the process.

Application to ANN. We can use the JL Lemma to get a somewhat
non-trivial improvement over our “baseline for Nearest Neighbour”
in the case of Euclidean space, for Approximate Nearest Neighbour
problem. Specically, apply Corollary 36.1 with n + 1 and small
 > 0 of our choosing, and get the conclusion for the set T =

S  x ⊆ Rd (which is xed, even though we do not know the
query x in advance). This allows us can solve the ANN problem,
using the baseline approach but in Rk , no longer Rd :

Lemma 36.1. For every  ∈ (0, 1/2, there is a (probabilistic) data
structure for the Approximate Nearest Neighbour problem with C =

1 + , using space O(
n log n

2
), and query time O(

n log n
2

), where the
output to each query is correct with probability at least 9/10.

This is not getting all the way there (we still have a near-linear
dependence on n in the query time!), but it is better.

Locality-Sensitive Hashing

In view of what we have seen about hashing, another appealing
idea would be to design some type of (family of) hash function
h : X → Y which somehow “preserves distances”: if two elements
x, x ′ are close, then are hashed into nearby buckets, and if they are
far h sends them into very different buckets. In a sense, this is what
the JL Lemma does for Euclidean distance: can we generalise this to
other notions of distances than ℓ2, and have a better control on the
size (≈ dimension) of the hashing space Y?

Locality-Sensitivity Hashing does exactly that, or, at least, sort
of. It was introduced, for the case of Hamming distance, in an
inuential paper by Gionis, Indyk, and Motwani 38: here is the 38 Aristides Gionis, Piotr Indyk, and

Rajeev Motwani. Similarity search
in high dimensions via hashing.
In VLDB, pages 518–529. Morgan
Kaufmann, 1999

formal denition.

Denition 36.1. Let 0 ≤ q < p ≤ 1, r > 0, C > 1, and (X , dist)
be a metric space. Then a family of functions H from X to Y is a
(r,C, p, q)-Locality Sensitive Hash family (LSH) if, for every x, x′ ∈ X ,

• If dist(x, x′) ≤ r, then Prh∼H[h(x) = h(x′)] ≥ p;

• If dist(x, x′) ≥ Cr, then Prh∼H[h(x) = h(x′)] ≤ q;

and we say ρ := log(1/p)
log(1/q) < 1 is the sensitivity parameter of H.

94 comp45270: randomised and advanced algorithms

X

A

h : X → Yh : X → Y

r
Cr

We will soon see the rationale behind dening this quantity ρ: in
the meantime, as usual, a few observations:

• An LSH family provides a way to control, at a given “scale” r,
the collisions probabilities: sure, you will have collisions, but
points close to each other (closer than this parameter r) are more
likely to collide than those much farther apart. This is not as
strong as we would like (ideally, we would have wanted the
guarantee to be true simultaneously for all r > 0), but this will be
good enough.

• We would like p to be as large as possible, and q as small as pos-
sible: or, put differently, ρ to be as large as we can achieve. This
gap is what will allow us to distinguish “far” from “close” with
good enough probability: if p, q are almost equal, this makes our
task harder.

• LSH families do exist (trivially): one could take Y = X and H to
be the single function mapping x to itself. This is not interesting
at all (it does not save space, time, or anything really), but at
least it shows this denition is not impossible to satisfy. What
remains is to get more interesting LSH families, with small Y .

As a start, we will show how to, given an LSH family for a specic
scale r > 0, solve a “‘baby version” of our Approximate Nearest
Neighbour question: that is, we will give a data structure that, after
preprocessing, supports the following query, for xed values of
r > 0 and C > 1.

Queryr(x): given an element x ∈ X , return an element y ∈ S,
or ⊥, such that:

• If there exists y∗ ∈ S such that dist(x, y∗) ≤ r, then, with
probability at least 9/10, Queryr(x) returns an element
y ∈ S such that dist(x, y∗) ≤ C · r;

• If dist(x, y) > C · r for every y ∈ S, then, with probability 1,
Queryr(x) returns ⊥.

• Otherwise, any output in S  ⊥ is allowed.

lecture 7: nearest neighbours and dimensionality reduction 95

To solve this “baby ANN version,” we will use. . . hash tables. But
in addition to a standard, run-of-the-mill good hashing family for
the hash tables, we will also use an (r,C, p, q)-LSH family, which
we assume is given to us (we will later show how to design such
an LSH family): in what is below, k and ℓ are integers, whose val-
ues we will carefully choose after analysing the guarantees of our
data structure. We rst need the following fact, which allows us to
“tune” the parameters p, q of an LSH family.

Lemma 36.2. Suppose H from X to Y is an (r, C, p, q)-LSH family,
and x any integer ℓ ≥ 1. For any g1 , . . . , gℓ ∈ H, dene the function
g : X → Y ℓ by

g(x) = (g1(x), . . . , gℓ(x)) ∈ Y ℓ

Then, the resulting family H(ℓ) := (g1 , . . . , gℓ) : X → Y ℓ is
an (r, C, pℓ , qℓ)-LSH family of size Hℓ (and as a result has the same
sensitivity parameter ρ).

Proof. “Proof by writing it down.”

Intuitively, this gives us some exibility when designing our data
structure: we do not get to choose p, q, and would like both (1) p to “What is the point of this ℓ?”

be large (better chances of nding close elements, and so smaller
probability of failure) and (2) q to be small (fewer “spurious” colli-
sions introduced, which will mean better query complexity in our
nal hash table-based data structure). This parameter ℓ allows us
to control (2) (as qℓ can be made as small as we want), at the price
of making (1) worse as well (pℓ goes down too); fortunately, we
will soon introduce our other parameter k which will give us con-
trol over (1), and so we will be able to achieve both (1) and (2) by
carefully balancing k and ℓ.

Let us now actually describe our data structure:

For a xed, given r (and some C > 1), let H be an
(r,C, p, q)-LSH family. Let g1, . . . , gk : X → Y ℓ be hash
functions chosen independently from H(ℓ). Build k hash
tables (A1, h1), . . . , (Ak, hk) with separate chaining, where
h1, . . . , hk : Y → Z are k independent “standard” hash func-
tions from a suitable hashing family.

• Preprocess(S):

for all x ∈ S do ▷ Insert all n elements in all k hash tables,
using their LSH hashing as keys

for all 1 ≤ t ≤ k do
At[ht(gt(x))].Insert(x)

• Queryr(x):

for all 1 ≤ t ≤ k do
Lt ← At[ht(gt(x))] ▷ List of elements of S colliding

with gt(x) in the t-th hash table

96 comp45270: randomised and advanced algorithms

for all y ∈ Lt do
if dist(x, y) ≤ C · r then

return y ▷ Found one!

return ⊥ ▷ Did not nd any.

Note that we use both the locality-sensitive hash functions gt
and the “regular” hash function ht: this is to save space, as if we “Why do we use two types of hash

functions?”only used the former we would have the “locality sensitive” part,
but none of the good guarantees from usual hash functions (small
number of hash buckets, along with small collision probability)
which allowed us last lecture to argue hash tables were space-
efcient. That is, we use two levels of hashing, with two different
“types” of hash functions:

• the rst level uses the LSH function gt to hash elements in a
“locality-sensitive way” (we want close elements to collide,
but far elements to go to distinct buckets): this is the main
conceptual idea. However, these at-most-n resulting elements
S′t := gt(x)x∈S still live in a very big space (i.e., Y ℓ), so storing
them naively would not be space-efcient; and so,

• the second level uses the “usual” hash functions ht to hash this
set of “LSH hashes” S′t in a “standard hash table way” (we want
as few collisions as possible), to save space.

We will establish the following guarantees for this data structure,
assuming each hash function from H can be evaluated in time T
and each hash table At uses space O(nd): We can improve the O(knd) space

complexity to O(kn log n + nd), by
only keeping the index of each element
x ∈ S in the data structure along with
a separate array containing all of them,
to look up where the i-th element
actually is.

Theorem 37. The data structure described above for the “baby version
of ANN” has space complexity O(knd+ kℓd), expected query complexity
O(kℓT + kndqℓ), and satises the correctness requirements as long as
(1− pℓ)k ≤ 1

10 .

Proof. The space complexity follows from that of the k hash tables,
each of which using space O(nd) (we also have to account for the
storage of the k “ℓ-fold” LSH hash functions, which we assume can
be done with ℓ ·O(d) bits each).

The expected query time comes from (1) evaluating (up to) k
hash functions g1(x), . . . , gk(x), for a total time O(kℓT); (2) for each
1 ≤ t ≤ k, checking the distance to x of every point in the list Lt
until we nd one that is at distance less than Cr. So we only have
to count the expectation number of false positives which collide but
are far, since a true positive y will be a success, and causes the func-
tion to immediately stop and return y. Each distance computation
can be done in time O(d), and by the LSH guarantee we have on
expectation at most

n · qℓ

such false positives (points y such that dist(x, y) ≥ C · r but with
gt(x) = gt(y)); to this, we must add an additional expected O(1)

lecture 7: nearest neighbours and dimensionality reduction 97

“standard hash collisions,” just from the usual guarantees of good
hash tables. So that gives us expected query time at most

O(kℓT) + k ·

n · qℓ + O(1)


· O(d) = O(kℓT + kndqℓ)

assuming, for the last part, that nqℓ = Ω(1).39 39 In particular, there is no point in
setting ℓ such that nqℓ ≪ 1, as the O(1)
term would then dominate.

For the correctness, rst observe that the second item is im-
mediate from denition of the algorithm: since Line 4 checks the
distance is at most C · r, if every point in S is at distance greater
than C · r from x then the algorithm will always output ⊥. The rst
item is trickier: assume there is a point y∗ such that dist(x, y∗) ≤ r.
Then the probability that none of the k LSH hash functions “collide”
is at most

Pr[∀t ∈ [k], gt(x) ̸= gt(y∗)] ≤ (1− pℓ)k ≤ 1
10

.

This is the bad event: if it does not happen, then at least one of
the k hash tables will map x and y∗ to the same bucket, and so at
least one y will pass the test in Line 4 (at the very least, y∗ would:
another y might be returned earlier).

This is encouraging, but we have a lot of parameters there. How
should we set k and ℓ?

• From the second term in the expected query complexity, by
setting

ℓ :=
log n

log(1/q)
(54)

we get qℓ = 1/n, and so the expected query time becomes
O(kℓT + kd).

• This gives us pℓ = 2−ℓ log(1/p) = n−ρ, and to satisfy the correct- “A wild sensitivity parameter ρ ap-
pears”ness condition

(1− pℓ)k ≤ 1
10

it is then sufcient (and necessary) to set Check it!

k = O(nρ) (55)

This nally gives us the following (recalling that log n ≪ d to
simplify the query complexity):

Corollary 37.1. With the settings of k, ℓ from Eqs. (54) and (55) and
assuming q, T = Θ(1), the data structure for the “baby version of ANN”
has space complexity O(n1+ρd) and expected query complexity O(nρd).

This is quite good: the space is only “mildly worse” than the
necessary nd, and query complexity is sublinear in n, since ρ < 1!

But. . . this was just a “baby” version of our problem: this did
not solve the ANN question itself! Thankfully, there is a ‘simple”
reduction from this version (where r is “hardcoded”) to the general
case:

98 comp45270: randomised and advanced algorithms

Theorem 38. Suppose that, for every 0 < r ≤ d, we have a data structure
for the “baby” version of ANN with scale parameter r and parameter
C > 0, with space complexity S(n, d), expected query complexity T(n, d)
and probability of failure  per query. Then there is a data structure for
ANN with parameter 2C, space complexity O(S(n, d) log2 n), expected
query complexity O(T(n, d) log n), and probability of failure  log n per
query..

Proof. This reduction is quite involved, and was shown in Theo-
rem 2.9 of 40. In the tutorial, you will see a much simpler version, 40 Sariel Har-Peled, Piotr Indyk, and

Rajeev Motwani. Approximate nearest
neighbor: Towards removing the curse
of dimensionality. Theory of Computing,
8(14):321–350, 2012

losing instead a logarithmic factor in the “aspect ratio”

 :=
maxx,x′ dist(x, x′)
minx,x′ dist(x, x′)

using, essentially, a doubling search over r.

At this point, we know what to do if we are given an LSH family
for the metric space (X , dist) we care about – and the smaller the
parameter ρ of that LSH family is, the better the query times and
space complexity we will obtain are. Which brings a very natural
question:

Are there good LSH families for the metric spaces we care
about?

We will give two examples, showing that the answer is (mostly)
“yes.”

Example: Hamming space

The rst example is that of the Hamming space of dimension d, which,
again, is just a fancy way of saying “the universe of d-bit strings
where the distance between two x, x′ ∈ X = 0, 1d is the number
of bits in which they differ.”

What will be the LSH family? The simplest thing one could think
of: H will just be the set of d functions

hi : 0, 1d → 0, 1, 1 ≤ i ≤ d

where hi(x) = xi just “hashes” a string x to its i-bit. That’s all! One
can then verify that, for every 1 ≤ r ≤ d and C > 1, If Cr > d the guarantee is trivially true.

• If dist(x, x′) ≤ r, then Prh∼H[h(x) = h(x′)] ≥ 1− r
d ;

• If dist(x, x′) ≥ Cr, then Prh∼H[h(x) = h(x′)] ≤ 1− Cr
d ;

and so this H is an (r,C, p, q)-LSH family for p := 1− r
d , q := 1− Cr

d ,
with size H = d and sensitivity

ρ =
log


1− r

d


log

1− Cr

d

 ≈ 1
C
. (56)

(as a side note, it has been shown that ρ = Θ(1/C) is the best one
can get for the Hamming space.)

lecture 7: nearest neighbours and dimensionality reduction 99

Example: Euclidean space (ℓ2 distance)

What about the Euclidean space? Recycling is good, so we may
want to use some of the ideas behind the JL Lemma to design a
good LSH Family. Fortunately, this is possible: pick a random vec-
tor g ∼ N (0, Id), and set

hg(x) = sign(⟨g, x⟩) ∈ −1, 1 (57)

(that is, pick a random gaussian vector g, and take the sign of the
inner product between g and x). One can show41 that, for every r > 41 And you will in the tutorial.

0 and C > 1, this gives an LSH family with sensitivity parameter

ρ ≤ 1
C
. (58)

Interestingly, this is not optimal! For the Euclidean space, more in-
volved constructions are able to obtain LSH families with sensitivity
parameter ρ = O(1/C2).

