
Lecture 6: Hashing and Friends

For the next two chapters, we will depart a little from the previous
focus which was by and large on algorithms, and look into their
usual companion: data structures. This is not saying there will not
be algorithms, or analysis of algorithms, or extensive use of these
concentration inequalities and mathematical notions we introduced
and went over at great length!

First, just so that we are clear on what a data structure is: it is a
way to store and organize data while providing a set of methods to
access (and, usually, update) this data efciently. This set of meth-
ods is the interface to the data (the analogue of an API), and you
may have seen it referred in previous courses by what is called an
abstract data type (ADT). So an ADT species an “API to the data,”
and a data structure is a concrete implementation of this API.29 29 Not an implementation in terms of

code, but in terms of algorithms, etc.
Once you have a data structure dened
and you’ve analyzed it, it still remains
to code it at some point. . .

Second, we will typically care about time efciency, but also
space (memory) efciency of a data structure: if we currently store
5 m-bit strings, we would rather avoid using Θ(2m) bits of mem-
ory – even though in this case that’s the size of the “universe” the
data comes from (there are 2m distinct m-bit strings). To quantify
this, let’s introduce some notation: we will have n elements (data
points), each of them coming from a universe (set of all possible
data points) X of size m. Our two main parameters will be n and
m: n can increase or decrease as we add or remove elements from
our data structure, and we usually have n ≪ m (the universe is big,
our dataset is much smaller).

As an example: we want to store 10,000 high-resolution pictures,
each 12.5 MP (3072× 4080 resolution). Assuming 8 bits per pixel,
what would be the corresponding values of n and m? This is a very naive way to bound m,

as not all sets of pixels will be valid
images. But it is good enough as a rst
approximation.• n = 10, 000 and m = 12, 533, 760?

• n = 10, 000 and m = 100, 270, 080?

• n = 10, 000 and m = 2100,270,080?

Clearly, we do not want to use space proportional to m.

Now, one of the most basic and fundamental examples of ADTs
is that of the dictionary, which only requires to provide 3 operations Or map, or associative array.

to maintain a set S ⊆ X :



76 comp45270: randomised and advanced algorithms

• Insert(x): insert the element x to S (do nothing if it is al-
ready in S)

• Lookup(x): return whether x ∈ S

• Remove(x): remove the element x from S (do nothing if it is
not in S)

Of course, there are several options to implement this, and you
most likely have seen or easily come up with a few data structures
for that: Check how you would get these. Can

you think of others?
• A linked list! Space O(n logm), all three operations in (worst-

case) time O(n).

• An array! Space O(m), all three operations in (worst-case) time
O(1).

• A self-balancing binary search tree (BST), e.g., an AVL tree! Space
O(n logm), all three operations in (worst-case) time O(log n).

Each of these has its drawbacks, especially the rst two. Is there a
way to do better? Specically, can we do space O(n) and all three
operations in time complexity O(1)?

Not quite, but almost. Enter hash tables, which, at a high level,
use randomization to make the array-based approach much more
space-efcient.

Hash tables

The basic idea of hash tables is that “the universe is a big place,
but it’s mostly empty.” So if we could “map” our universe X to a
much, much smaller set Y such that any subset S ⊆ X of n distinct
elements gets mapped to a subset S′ ⊆ Y still of n distinct elements,
we would be in good shape: then, we could apply the array-based
solution above to Y , only paying space proportional m′ = Y  ≪ m.
Ideally, we could even take m′ = O(n)? Sanity check: we cannot hope for

m′ < n. Can you see why?

X Y



lecture 6: hashing and friends 77

Unfortunately, there is an issue with the above approach: it is not
possible. That is, no matter what mapping we choose, there will be a set of
n elements mapped to fewer than n points.

Fact 30.1 (Pigeonhole Principle). Fix any two sets X , Y with m >

m ′ . Then, for any mapping h : X → Y , there exists a set S ⊆ X of
m−1
m ′


+ 1 ≥ 2 elements all mapped to the same value in Y .

Importantly, this “bad set of elements” depends on the function
h. This is merely telling us that, if we do this mapping (“hashing”)
from a large universe X to a smaller set Y deterministically, then
there will be a worst-case set of elements for which our strategy fails
catastrophically. But what if we did things at random?
We can consider three options:

• The data is randomly distributed: maybe our n elements are not
worst-case, but “typical” in some way, and we can model that as
if they were chosen uniformly at random in X . Then the above
argument does not go through, and we could use a single, de-
terministic hash function h : X → Y while still getting good
guarantees on average (over the randomness of the data). The
main issue is that this is not a very realistic assumption, and
what we can prove under this assumption will be more a heuris-
tic as to why we could hope things to work in practice than a
rigorous guarantee. Still, better than no guarantees at all.

• The hash function is totally random: This would be nice. Then all
the values h(x)x∈X are independent, uniformly distributed in
Y we can bring in all the tools we have seen to analyze random
variables in order to check the probability of a collision, the
average number of elements hashed to a bucket y ∈ Y , the
maximum number of elements hashed to any bucket, etc. The
main issue is that this will not solve our space issue: a totally
random function takes a lot of space to store, basically

m log2 m
′

bits: even worse than the array-based solution! We could try
to only dene h on-the-y, by generating h(x) at random only
the rst time we need to hash x ∈ X . This would only require
n log2 m

′ bits of space. . . but now, we need to be consistent, and
that means rst checking if we already decided the value of h(x)
earlier. And for that, we need a dictionary – that’s the problem
we are trying to solve in the rst place!

• The hash function is “somewhat random”: since a single hash func-
tion (deterministic) is bad (for collisions), and a truly uniform
hash function (picking a function uniformly at random from all
(m ′)m functions from X to Y ) is also bad (for space), we could
try to pick h uniformly at random from a much smaller set of
functions H. Such an h will only require log2 H bits to store,
so if we can design H to be both small enough that this is space-
efcient, and large enough that taking a random h from it looks



78 comp45270: randomised and advanced algorithms

like we are picking a truly random function, then we are in good
shape. And we are lucky: we have had a glimpse of these hash
families in Chapter 4, and they exist.

Let us start with some more on these hash families: recall the no-
tion of a strongly universal hash family H from Denition 31.1, which
was asking that, for any pair of distinct x, x ′ ∈ X , the two values
h(x), h(x ′) behave exactly (over the random choice of h from H)
like two independent and uniformly distributed elements in Y . We
saw that such a family H of size only 2log(m+1) existed for the
case Y  = 2 (Fact 22.2). One can also ask for more than just

pairwise independence, and re-
quire that, for any k-tuple of distinct
x1, . . . , xk ∈ X , their hashed values
h(x1), . . . , h(xk) behave like k inde-
pendent uniformly random values
in Y . This is called a family of k-wise
independent hash functions, and again
for the specic case of Y  = 2 can
be achieved with a family H of size
2O(logm).

For the general case, we can invoke the following result:30

30 Try to prove it! This is similar to one
of the exercises in Tutorial 4.

Theorem 31. Fix a prime number p ≥ 2 and an integer k ≥ 1. For given
a = (a0, a1, . . . , ak) ∈ Zk+1

p , dene the function ha : Zk
p → Zp by

ha(x) = a0 +
k

∑
i=1

aixi mod p, x ∈ Zk
p

and let H = haa∈Zk+1
p

. Then H is a strongly universal hash family of

size H = 2(k+1) log2 p.

In particular, by Bertrand’s postulate, for every m′ there exists a
prime number m′ ≤ p < 2m′. By choosing the smallest integer k
such that pk ≥ m, we get a strongly universal hash family from X
to some Y of cardinality O(m′), of size 2(k+1) log2 p = 2O(k logm′) =

2O(logm). A little cumbersome, but it works.

Still, strongly universal hash families are a very. . . strong (!)
notion. For hash tables, all we need, in the end, is to have as few
collisions among hash values are possible: so it makes sense to only
ask for this, which brings us to the (weaker) notion of strongly
universal hash family:

Denition 31.1. A family of functions H ⊆ h : X → Y is a
universal hash family, if, for every x, x′ ∈ X with x ̸= x′,

Pr
h∼H


h(x) = h(x′)


≤ 1

Y 
where the probability is over the uniformly random choice of h ∈
H.

Why this RHS? From Chapter 3 on Balls and Bins, we know
that 1

Y  is the collision probability of two independent uniformly
random values in Y : so this denition is basically asking to do,
collision-wise, at least as well as if each pair of hashed values be-
haved like two independent uniform random variables. And asking
for an inequality instead of an equality just gives us more freedom
when designing our H, so why not? We will see in the tutorial that it

is possible to build universal hash
families for which the inequality is
strict for some pairs x, x′.

This second notion will usually be enough for hash tables. But is
it actually weaker? As it turns out, yes:

Lemma 31.1. Every strongly universal hash family is also a universal
hash family. Moreover, there exist universal hash families which are not
strongly universal.



lecture 6: hashing and friends 79

Proof. See Tutorial 4.

To provide an example of a relatively simple (and small) univer-
sal hash family, x any prime number m ≤ p < 2m and invoke the
following construction:

Theorem 32. Fix a prime number p. For given integers a, b, dene the
function ha,b : Z p → [m ′ ] by

ha(x) = (ax + b mod p) mod m ′ , x ∈ Z p

and let H = ha,b1≤a<p
0≤b<p

. Then H is a universal hash family of size
H ≤ 22 log2 p.

Proof. The last part is clear, as H = p(p − 1) (number of choices
for the pair (a, b).) To see that it is a universal hash family, note
that if x, x ′ ∈ Z p are distinct and 1 ≤ a < p , then a and x − x ′

are both among the p − 1 invertible elements of Z p (which is a eld
since p is prime). This implies ax + b ̸= ax ′ + b mod p. As a result,
again in the eld Z p , the linear system

ax + b = y

ax ′ + b = y ′

has a unique solution in Z p \ 0 × Z p for distinct y, y ′ ∈ Z p

(and no solution for y = y ′): a = (x − x ′)−1(y − y ′) and b =

a(y ′ − y)−1(yx ′ − y ′x). The probability that the two independently
chosen a and b take these two unique values is 1

p−1 · 1
p . We thus

have, over the random choice of 1 ≤ a < p, 0 ≤ b < p, that

Pr
a,b


ax + b = y mod p, ax ′ + b = y ′ mod p


=




0 if y = y ′ mod p

1
p(p−1) if y ̸= y ′ mod p

Finally, ha,b(x) = ha,b(x ′) if, and only if, ax + b = y and ax ′ + b =

y ′ for two values y, y ′ ∈ Z p such that y = y ′ mod m ′ . For any of
the p choices of y ∈ Z p , there are at most p/m ′  such choices of
y ′ ∈ Z p :

y + m ′ , y + 2m ′ , . . . , y +

p/m ′ · m ′

and so

Pr
a,b


ha,b(x) = ha,b(x

′)

≤ p ·

 p
m ′


· 1
p(p − 1)

≤ p · p − 1
m ′ · 1

p(p − 1)
=

1
m ′

where we used that, since p is prime,
 p
m ′


=


p−1
m ′


≤ p−1

m ′ .

The above shows that, indeed, we have good universal hash families
(and even strongly universal ones if needed), with hash functions
very easy to evaluate on any given input: so in what follows, we
will, unless specied otherwise, go with the third option of “some-
what random hash functions.” The name of the game is to establish



80 comp45270: randomised and advanced algorithms

every statement we want to prove as if we were in the “second op-
tion” (the most convenient for us!), and at the end check the proof
to verify we only used randomness in a way consistent with the
third. This typically means relying on linearity of expectation and
variance-based arguments such as Chebyshev’s inequality, but no
Chernoff or Hoeffding bounds (as the versions we have seen in this
class require full independence). There exist Chernoff-type bounds

using limited independence, but this
is beyond the scope of these lecture
notes.Alright, so what is a hash table? We nally get to it. A hash table

consists of 3 things:

• A hash function h from the universe X to a much smaller set Y ,
usually of size m ′ = Y  = O(n). [This h is, at the initialization of
the data structure, drawn from a “good” hash family H];

• An array A of size m ′ , where A[h(x)] will indicate whether
element x ∈ X is in the data structure; and

• a strategy to handle collisions in when two distinct x, x ′ ∈ X
end up in the same bucket (cell) of A because they have the same
hash value (i.e., h(x) = h(x ′)).

You may be wondering at this point – what is this third bullet? Did
not we do all this hoping to minimize the probability of collisions?
Why do we still have to worry (and handle) them?

X

A

h : X → Y

The sad truth is that collisions are inevitable, no matter how
carefully we design our hash functions; and, even worse, we al-
ready saw why! This is the birthday paradox.

Fact 32.1. Suppose A is of size m′ ≤ c · n2, for some absolute constant
c > 0. Then, even if the hash function h : X → [m′] was truly random,
or even if the n data points were truly independent uniformly random
elements of X , there would still be a 99% probability at least two elements
of the data structure are hashed to the same bucket of A.

It is even worse than that: since we would like to take m′ = O(n),
we also have this other result we saw earlier. . . At least, for this one, we have some

idea of how we could try and resolve
it: the power of two choices might
help? Peeking ahead, this is the idea
behind Cuckoo Hashing.

Fact 32.2. Suppose A is of size m′ ≤ c · n, for some absolute constant
c > 0. Then, even if the hash function h : X → [m′] was truly random,



lecture 6: hashing and friends 81

or even if the n data points were truly independent uniformly random
elements of X , the expected maximum load among all buckets of A would
be Ω


log n

log log n


. That is, we would expect at least one of the buckets to

have at least this many hash collisions.

Handling collisions

Fortunately, there are many strategies to handle collisions, each
with its advantages and drawbacks. We can divide them in two
broad families: separate chaining, and open addressing.

(Separate) chaining Separate chaining is the most natural strategy:
everybody hash value gets a list! If several of our n data points are
hashed to the same bucket in A, add them to a linked list! That is,
A[y] will link to a list of all the elements x we want to store such
that h(x) = y. To implement the 3 operations, we then just delegate
to the list stored in the bucket:

• Insert(x): call A[h(x)].Insert(x)

• Lookup(x): return A[h(x)].Lookup(x)

• Remove(x): call A[h(x)].Remove(x)

X

A

h : X → Y

In that sense, it combines the hash table (which is based on the
naive array-based approach) with the linked-list approach, in an
attempt to get the best of both worlds. Let

α =
n
m′ (51)

denote the load factor of the hash table. For m′ = O(n), this will be a
(small) constant. Then: Note that chaining allows the load α

to be greater than 1. The next strategy,
open addressing, does not.• the total space used will be

O(logm+ (1+ α)n logm) = O((1+ α)n logm)

(the cost of storing the hash function, and the total space used by
the array itself and by all the lists: that last one is proportional to
the numbers n of elements currently stored).



82 comp45270: randomised and advanced algorithms

• by linearity of expectation, the expected time complexity of all 3
operations is O(1+ α), since α is the expected size of any given
list.

• . . . but (think of the max load argument), most likely than not
we will have some of the buckets for which the list has size
Ω(log n/ log log n). This leads, for those, to a perfor-

mance comparable to that of the BST
approach!
TODO Give more detail here? Empir-
ical evaluation of the maximum load
for the family of hash functions given
above.

Open addressing Another approach to handle collisions is open ad-
dressing, which itself comes in several variants. The basic idea is
quite simple: instead of a single hash function, we have a sequence
of hash functions h1, . . . , ht, . . . , hm′ . If we are trying to insert an ele-
ment x in the hash table, we look at the bucket h1(x): if it’s already
taken (collision!), then we go to h1(x): if taken, we look at h3(x);
etc. We stop when we found an empty bucket.31 31 If there is no empty bucket, then

this means the hash table is full (the
load factor is α = 1) and we need to
increase m′ to resize A – an expensive
operation, as this means re-hashing all
elements.

That is, we have the following:

• Insert(x):

for all 1 ≤ t ≤ m′ do
if A[ht(x)] = x then

return ▷ Already there
else if A[ht(x)] =  or A[ht(x)] = ⊥ then

A[ht(x)] ← x ▷ Insert it in the rst available bucket
return

• Lookup(x):

for all 1 ≤ t ≤ m′ do
if A[ht(x)] = x then

return yes

else if A[ht(x)] =  then
return no ▷ If x was present, it’d have been found earlier

• Remove(x):

for all 1 ≤ t ≤ m′ do
if A[ht(x)] = x then

A[ht(x)] ← ⊥ ▷ Special symbol to indicate there was
something before

return
else if A[ht(x)] =  then

return ▷ If x was present, it’d have been found earlier

You may wonder why we have this strange symbol ⊥ when we
remove an element x. The reason is that if we just emptied that
bucket by (making it ), this would potentially mess up future
lookups: we would not know when to stop searching!

But how do we choose this sequence of hash functions? We would
like a few things: rst, to make sure we cover all possible buckets:
namely, for every x ∈ X , we want

(h1(x), . . . , hm′(x))



lecture 6: hashing and friends 83

to me a permutation of 0, 1, 2, . . . ,m′. This is to make sure we
do explore all possible buckets when trying to lookup or insert an
element, if we keep nding collisions. Second, we would like to be
able to store (and evaluate) them all succinctly. We had only one
hash function before, and we went to great lengths to make sure
it did not take too much space to store, only O(logm) bits: now, if
we have m′, we’d like to avoid blowing up our space usage by that
factor! For m′ = O(n), that would use space O(n logm). . .

Before discussing (briey) some common choices for this se-
quence of hash functions, let us rst analyze the resulting (ex-
pected) time complexities of our 3 methods, under some very ideal-
ized (and unrealistic) assumptions:

Theorem 33. Assume that our sequence of hash functions is such that,
for every element x ∈ X , the (random) sequence (h1(x), . . . , hm ′ (x))
is a uniformly random permutation of [m ′ ]. Then, for every x ∈ X ,
Lookup runs in expected time

O


1
1 − α



where α is the load factor of the hash table, as dened in (51).

Proof. Fix any x ∈ X . Since we want to upper bound the expected
running time, it is enough to consider the case where x is not in the
data structure (unsuccessful lookup), since otherwise the search
will end earlier (once it nds x). So the time here will be the num-
ber of steps until an empty bucket is found (in which case Lookup
nally will return no).

By symmetry, the probability that any given bucket is empty is
equal to 1 − n

m ′ . Let T(n,m ′) be the time taken by an (unsuccess-
ful) search for item x in the hash table of size m ′ containing n hash
values. If the rst index checked corresponds to an empty bucket
(with by the above happens with probability n

m ′ ), then the search
ends after this one step; otherwise, we continue on the remaining
subarray of m ′ − 1 buckets, containing the remaining n − 1 hash
values. And, crucially, the remaining sequence of hash functions
values (h2(x), . . . , hm ′ (x)) is still a uniformly random permuta-
tion of these remaining m ′ − 1 buckets (all except the bucket h1(x),
which has been looked at already). So we have the recurrence rela-
tion:

E

T(n,m ′)


= 1 +

n
m ′ · E


T(n − 1,m ′ − 1)



We can then prove by induction (over n) that the solution is

E

T(n,m ′)


≤ 1

1 − n
m ′

,

which concludes the proof.

With this in hand, here are some of the common strategies to
implement open addressing:



84 comp45270: randomised and advanced algorithms

• Linear probing: forget about using completely distinct hash
functions! We have one hash function h, let us make the most out
of it and just look at the next bucket at each step:

ht(x) = h(x) + (t − 1) mod m ′

On the plus side, this is very good in terms of space complexity
(we still only store one hash function), and very fast to evaluate
(as long as h itself is fast to evaluate). How well does this do?
The time complexity of any of the 3 functions is again related to
the load factor of the hash table, and quickly degrades as α gets
close to 1. Namely, we have:

Theorem 34 (Knuth’62). Assume for simplicity that the hash function
h : X → Y is a truly random function, and furthermore that the
loads of each bucket , (h−1(y))y∈[m ′ , are independent. Then, the
expected time complexities of Insert, Lookup, and Remove are all
O


1
(1−α)2


.

We will not prove this here, but this is actually quite surpris-
ing (and bad), and shows that linear probing actually performs
much worse than one would think! Indeed, compare this to the
wishful analysis of Theorem 33.

• Quadratic probing: the same idea, but now

ht(x) = h(x) + c1 t + c2 t2 mod m ′

for two constants c1 , c2 with c2 ̸= 0 chosen somewhat arbitrarily
(but in order to get a permutation of 0, 1, 2, . . . ,m ′ ). This is
supposed to incur less “clustering” of values than linear probing,
while having the same advantages.

• Double hashing: we use two hash functions, h, g, and set

ht(x) = h(x) + (t − 1) · g(x) mod m ′

• Cuckoo hashing: this one is really neat, as it goes beyond ex-
pected running times, and actually provides worst-case running
time guarantees for 2 out of 3 operations. This hashing strategy
was proposed and analyzed by Pagh and Flemming in 2001,32 32 Rasmus Pagh and Flemming Friche

Rodler. Cuckoo hashing. In ESA,
volume 2161 of Lecture Notes in Com-
puter Science, pages 121–133. Springer,
2001; and Rasmus Pagh and Flem-
ming Friche Rodler. Cuckoo hashing.
J. Algorithms, 51(2):122–144, 2004

and relies on a beautiful idea you have seen in an earlier lecture:
the power of two choices. Specically, the data structure uses two
hash tables, h1, A1 and h2, A2. An element x ∈ X can only be
hashed to one of its two locations, either A1[h1(x)] or A2[h2(x)]:
so for lookups and removals, it sufces to check both of these.

– Lookup(x):

if A1[h1(x)] = x or A2[h2(x)] = x then
return yes

else
return no



lecture 6: hashing and friends 85

– Remove(x):

if A1[h1(x)] = x then
A1[h1(x)] ← 

else if A2[h2(x)] = x then
A2 [h2(x)] ← 

For insertions, it is a bit more complicated. When inserting an
element x, if either A1 [h1(x)] or A2 [h2(x)] is empty, we are
done: we can insert x to that empty slot. If both are currently
occupied, say by two other elements x ′ and x ′′ . . . then, an eviction
occurs (which is where the “cuckoo” part of the name comes
from. Cuckoos are. . . not very nice birds.). That is, x takes the
spot of x ′ , forcing x ′ to go to its own other location in A2. If that
location is empty, then x ′ goes there and everyone is happy: but
if another element was there. . . then x ′ takes that spot, forcing
that element itself to go to its alternate location in the other
hash table. And so on and so forth, until the cycle ends or the
maximum number of evictions has been reached.

– Insert(x):

if A1 [h1(x)] =  then
A1 [h1(x)] ← x

else if A2 [h2(x)] =  then
A2 [h2(x)] ← x

else
T ← 0 ▷ The evictions start
x ′ ← A1 [h1(x)]
A1 [h1(x)] ← x
while T < Tmax do

x ′ goes to A2 [h2(x ′)], and if there was something
there, that element now needs to move, etc.

T ← T + 1

Theorem 35. Cuckoo hashing achieves worst-case time O(1) for
Lookup and Remove, and expected time O(1) for Insert.

The guarantees for Lookup and Remove are immediate; the
expected guarantee for Insert, however, is quite involved. We
will not prove it here (but will discuss some of it during the
tutorial).

Remark 35.1 (And there is more!). There are other strategies, such
as 2-level hashing (where we use a second hash table for each
bucket). We will see more during the tutorial.

Bloom lters

As we saw above, a hash table allows us to store and retrieve data
very quickly (in expectation, or “for typical data”); the data struc-
tures never “make mistakes”, since the result is always correct, and
the only random aspect is the time complexity. But while they are



86 comp45270: randomised and advanced algorithms

typically faster and very space efcient, hash tables do still use
some space: if each element x ∈ X takes log2 m (where m = X )
bits to store, a hash table will take O(n log2 m) space to store n
elements. Which is very little, and usually alright, but sometimes is
not.

In this short section, we will see a related data structure, the
Bloom lter, which uses much less space while still providing ef-
cient access and insertion: only O(n) space to store n elements
(regardless of how many bits an element takes to encode)! But this
comes at a price: sometimes, the result of a query to the data struc-
ture will be wrong. However, when designed well, the frequency
with which those mistakes occur is relatively low, and can be con-
trolled.

Let us start with what a Bloom lter is. For simplicity, here we
will only allow insertions (Insert) and lookups (Lookup), but no
deletions.33 The Bloom lter is an array A of size m′ (containing m′ 33 They could be implemented, but this

adds quite a bit of complexity to the
data structure.

bits, initialized to 0), along with k distinct hash functions h1, . . . , hk,
each mapping the data universe X to [m′] = 1, 2, . . . ,m′:

hi : X → Y = [m′], i ∈ 1, 2, . . . ,m

where m′ and k are parameters to choose. Here is how it works:
given an element x ∈ X ,

• insert(x) evaluates the k hash functions on x and sets the bit of
all k corresponding cells to 1.

function Insert(x)
for all 1 ≤ i ≤ k do

A[hi(x)] ← 1

• Lookup(x) evaluates the k hash functions on x and checks that
all the k bits in the corresponding cells are equal to 1.

function Lookup(x)
for all 1 ≤ i ≤ k do

if A[hi(x)] = 0 then
return no

return yes

’
That’s all! In the rest of this lecture, we will try to see what this

does, how to analyze the performance, and see how to choose the
parameter k (number of hash functions).

What type of “mistakes” can Lookup make? A Bloom lter can
only make one type of errors: false positives (returning yes when
the element is not in the data structure), never any false negative
(returning no although the element is in the data structure). This
is because once its corresponding bits are set to 1, the element will
always be reported as present. But a non-present element might
have its k bits set to 1 by several other elements. Here’s an example



lecture 6: hashing and friends 87

with m = 3, N = 10, and X = 1, 2, 3, 4: consider the hash
functions

h1 h2 h3
1 1 5 10
2 9 4 6
3 1 6 3
4 7 3 8

Say we insert S = 1, 2, 4: the corresponding bits set to 1 will be
(indexing starting at 1)

1 ⇝ A[1], A[5], A[10]

2 ⇝ A[9], A[4], A[6]

4 ⇝ A[7], A[3], A[8]

Now, when calling Lookup(3), we will check if the bits A[1], A[6], A[3]
are all equal to 1. And they all are, so Lookup(3) will return yes

even though 3 was not inserted.

Space complexity Assuming each hash function can be stored in
O(logm) space and takes O(1) time to evaluate, the space com-
plexity of the Bloom lter is

O(k logm + m ′) (52)

and the (worst-case) time complexities of Insert and Lookup are
O(k).

Error probability Under the idealized (that is: wrong) simplifying
assumption that all k hash functions behave like independent, truly
random functions, one can show that the probability that Lookup
makes an error after n elements have been inserted in the data
structure is


1 −


1 − 1

m ′
nk
k

≈

1 − e−

nk
m′
k

(53)

By looking at the tradeoff between space (52) and error probability
(53), one can then set the parameters k and m ′ as desired. For in-
stance, for a xed n and a target value of space m ′ , we can derive
the optimal value of k to set in order to minimize the probability of
error.


