
Lecture 5: Graph algorithms

In the previous chapter, we used Max-Cut as a running example
to illustrate some derandomisation techniques. In this chapter, we
will again look at graph algorithms, but focusing on problems for
which we know efficient deterministic algorithms. The key message
here is that randomisation does allow us to do things even more
efficiently – and, sometimes, to also extract theorems about graphs
from our algorithms!

Karger’s Min-Cut algorithm

We will start with a beautiful algorithm, due to Karger 16 (and 16 David R. Karger. Global min-cuts
in RNC, and other ramifications of a
simple min-cut algorithm. In SODA.
ACM/SIAM, 1993

improved by Karger and Stein 17), for the minimum cut question:

17 David R. Karger and Clifford Stein.
An Õ(n2) algorithm for minimum
cuts. In STOC. ACM, 1993

If G is not connected, we can detect
this in O(m + n) time, and then a
“minimum cut” is. . . easy to find.

Min-Cut: Given an (undirected) connected graph G = (V, E)
on n vertices and m edges, output a cut (A, B) (partition of V)
minimising the number c(A, B) of edges between A and B.

Of course, we want an efficient algorithm for that. As a baseline,
one could try to “just” find a good deterministic algorithm to solve
the problem. Fortunately, we have some:

Fact 25.1. Min-Cut can be solved by computing n− 1 instances of the
Max-Flow problem. This can be done is polynomial time in n and m Recall the Max-Flow problem: given

a directed weighted graph and two
vertices s and t, find a maximum
feasible flow from s to t.

(and, actually, in time 18 O
(

mn log n2

m

)
).

18 Jianxiu Hao and James B. Orlin.
A faster algorithm for finding the
minimum cut in a directed graph. J.
Algorithms, 17(3):424–446, 1994

This is annoying, as this strongly hints that, well, we’re done
here. However, the above algorithm is quite involved: can we do as
well, or even better, with a simple randomised algorithm?

As it turns out, yes. Here is the gist of the algorithm: (1) Pick
an edge of the graph uniformly at random. (2) “Merge” its two
endpoints. (3) Repeat.

That’s all! Of course, to formally describe and analyse this mind-
blowingly simple algorithm, we first need to define what we mean
by “merging” two vertices. This is an operation called contraction:

Definition 25.1. Let G = (V, E) be a multigraph19 and e = (u, v) ∈ 19 We allow parallel edges, but no self-
loops. So there could be several edges
between two distinct vertices u, v (but
none from u to itself).

E one of its edges. The contraction of G with respect to e, denoted
G/e, is the multigraph on |V| − 1 vertices defined from G as fol-
lows:

62 comp4

5
270: randomised and advanced algorithms

1. Replace u and v by a single vertex, uv;

2. Replace all edges of E of the form (u, w) or (v, w) by an edge
(uv, w);

3. Remove all self-loops (uv, uv) the second step may have created.

The process is illustrated in Fig. 10. Note that a contraction can
be performed in time O(n) given either the adjacency list or adja-
cency matrix representation of the multigraph.

Figure 10: A contraction of the edge
e = (1, 2): the original (multi)graph
is on the left, and the resulting
(multi)graph G/e on the right.

Another way to interpret the contraction is that, after contracting
some edges to get a multigraph G′ = G/(e1, . . . , ek), each vertex u
in G′ corresponds to a subset of vertices Su ⊆ V from the original
graph G = (V, E): the subset of all vertices that were contracted
together to become u. And any two distinct u, v from G′ correspond
to disjoint subsets Sv, Sv ⊆ V (during a contraction, a vertex cannot
be merged to two separate new vertices!).

So if after a sequence of contractions we end up with a multi-
graph G′ which has only two vertices u, v, we get a cut in our orig-
inal graph G: the cut (Su, Sv). And the value c(Su, Sv) of this cut is
then exactly the number of parallel edges between u and v.

This is the basis for our algorithm, which we are now able to
state:

Algorithm 10: Karger’s Min-Cut

algorithm.Require: multigraph G = (V, E)
1: while |V| > 2 do
2: Pick an edge e ∈ E uniformly at random
3: Contract it, and let G ← G/e

4: return the cut defined by the remaining two vertices.

This is all. Each iteration of the loop takes time O(n); each con- The contraction operation does, and
we will see in the tutorial that sam-
pling an edge uniformly can be done
in time O(n) as well.

traction reduces the number of vertices by one, and we started
with n vertices: so we have n − 2 iterations. Overall, running Al-
gorithm 10 takes O(n2) time. But is the cut it returns any good? And
importantly, why would we expect to be any good?

Some intuition. As a thought experiment, consider any (fixed)
cut C = (A, B) of the graph. The only way C will survive until
the end of the algorithm (and be returned in Line 3) is if we never

lecture 5: graph algorithms 63

Figure 11: The sequence of steps
for one run of Karger’s algorithm
(Algorithm 10) on a (regular) graph
with n = 12 vertices and m = 48 edges.
The cut returned has 8 edges.

contract any edge going from a vertex in A to a vertex in B: that is,
any vertex of the cut itself. Because as soon as we contract such an
edge, some vertex in A is merged with some vertex in B, and the
cut (A, B) does no longer exist in our new contracted multigraph.
Put differently, the more edges there are between A and B, the less
likely the cut C should be to make it to the end of the algorithm,
and as a result, we expect “small cuts” (those with fewer edges
crossing) to have a better probability to be returned. But that’s Consider a different strategy for Line 2

of the algorithm, which would sample
a pair of distinct vertices (u, v) uni-
formly at random (not necessarily an
edge). Would that work?

exactly what we want: by definition, minimum cuts are the smallest
cuts possible! So they should be the ones being the most likely to
be returned by our algorithm. . .

To make it formal, fix any minimum cut C = (A, B) of G, and let
k = c(A, B) be its value. For 1 ≤ i ≤ n − 2, let Ei be the event that
the edge e picked in the i-th step of the algorithm does not belong
to our cut C. By the above discussion,

Pr[C is returned] = Pr[E1 ∩ E2 ∩ · · · ∩ En−2]

(No edge from C is ever contracted)

= Pr[E1] Pr[E2 | E1] · · · Pr[En−2 | E1 ∩ E2 ∩ · · · ∩ En−1]

Based on this, what we need to conclude is to get a good lower
bound on the probability

Pr[Ei+1 | E1 ∩ E2 ∩ · · · ∩ Ei]

for all 1 ≤ i ≤ n − 3: then, we will multiply all of them, and hope
for the best. Write Gi = (V i , Ei) for the multigraph at the end of
step i: so G0 = G, and Gn−2 is the 2-vertex multigraph obtained
at the end. The probability that an edge of C is chosen in step i + 1
to be contracted (if C has survived until then, which is the event
E1 ∩ E2 ∩ · · · ∩ Ei) is then equal to

k
|Ei |

(41)

We need to (upper) bound this probability, and all we know is that:

• the number of vertices is |V i | = n − i;

64 comp4

5
270: randomised and advanced algorithms

• the value of any minimum cut of Gi is k (there is one cut of size
k, our cut C which survived so far; and there cannot be smaller
cuts, as they would imply a smaller-than-minimum cut in the
original graph G as well).

The key observation is that the minimum degree of Gi must then be
at least k. Otherwise, there would exist some vertex u ∈ V i with
less than k neighbours: choosing the cut {u}, V i \ {u} would give
a cut in Gi of size less than k. Using the Handshaking Lemma,20 we 20 Which, importantly, also holds in

(simple) multigraphs.have

|Ei| =
1
2 ∑

v∈Vi

deg v ≥ 1
2
|Vi| · k (42)

or, equivalently,
k
|Ei|
≤ 2
|Vi|

=
2

n− i
.

This shows that

Pr[Ei+1 | E1 ∩ E2 ∩ · · · ∩ Ei] = 1− k
|Ei|
≥ 1− 2

n− i
(43)

and as a result, “multiplying all the conditional probabilities and
hoping for the best” gives

Pr[C is returned] =
n−3

∏
i=0

Pr[Ei+1 | E1 ∩ · · · ∩ Ei]

≥
n−3

∏
i=0

(
1− 2

n− i

)

=
n−3

∏
i=0

n− i− 2
n− i

=
n

∏
j=3

j− 2
j

=
1 · 2 · 3 · 4 · · · (n− 2)

3 · 4 · 5 · · · · (n− 2)(n− 1)n

=
2

(n− 1)n
. (44)

What we showed is that, with probability at least 2
(n−1)n , Karger’s

algorithm (Algorithm 10) returns this specific minimum cut C.
There may be more than one possible minimum cut, so the proba-
bility it returns some minimum cut is at least 2

(n−1)n :

Theorem 26. Karger’s algorithm (Algorithm 10) returns a minimum cut
with probability at least 2

(n−1)n = Ω
(
1/n2).

On the one hand, this is great: the algorithm works! On the
other hand, this is somewhat problematic: the probability of success
we can guarantee is very small. Fortunately, similarly to what we
saw in Chapter 2, we can increase our probability of success by
repetition, using Algorithm 10 as a blackbox. That is:

lecture 5: graph algorithms 65

Algorithm 11: Amplifying the proba-
bility of Karger’s Min-Cut algorithm
via repetition.Require: multigraph G = (V, E), integer T

1: for 1 ≤ t ≤ T do ▷ Use fresh (independent) random bits for each
2: Run Algorithm 10 on G, let Ct be the output

3: return the smallest cut among all cuts C1, . . . , CT obtained

From Theorem 26, we know that each of the T independent
repetitions of the algorithm has probability p ≥ 2

n(n−1) of return-
ing a minimum cut. And since it is returning the best cut among
them, Algorithm 11 will return a minimum cut unless none of these
T cuts is a minimum cut. So

Pr
[

Algorithm 11 fails to
return a minimum cut

]
= (1 − p)T ≤

(
1 − 2

n(n − 1)

)T
≤ e−

2T
n(n−1)

where we used the inequality 1 − x ≤ e−x in the end. To achieve
probability of success 1 − δ, it suffices to choose T so that the RHS
is at most δ: one can check that setting

T =
⌈

n2 ln(1/δ)
⌉

suffices. Overall, the running time is O(Tn2), showing the follow-
ing:

Theorem 27. For any δ > 0, the “Best-of-T” version of Karger’s al-
gorithm (Algorithm 11) returns a minimum cut with probability at least
1 − δ, and runs in time O

(
n4 log(1/δ)

)
.

Given how simple the algorithm is, this is quite remarkable!
However, given that the (much more involved) best deterministic
algorithm can find a minimum cut in time O(mn log n2

m) = O
(

n3),
it is natural to wonder if we can do even better.

Improving Karger’s algorithm: the Karger–Stein algorithm

The starting point is to note that Karger’s algorithm does very well
in the first few iterations, but the guarantees degrade quickly to-
wards the end. Again, let’s look at a fixed minimum cut C of size
k: the probability to “kill” C with the first contraction is very small,
k/m. At the i-th step, when i is not too big, this is still very small:
in Eq. (43), we bounded it by

2
n − i

≈ 2
n

All good! But at the end of the algorithm, the last few steps, this
becomes really, really bad: at the last step (i = n − 3), for instance,
the probability that C is “killed” is only bounded by

2
n − i

=
2
3

This tells us that after surviving almost until the end, we can only
guarantee that our minimum cut C has a 33% chance of surviving

66 comp4

5
270: randomised and advanced algorithms

the very last step! And the first few contractions before that are not
much better: each of them has a constant probability of killing C.

Based on this, it makes sense to only run Karger’s algorithm for
a while, and then do “something else” once we have contracted suf-
ficiently many edges. This leaves two questions: (1) When should
we stop? and (2) What should we do afterwards?

To answer the first question, we can look back at our analysis
of the success probability. If we stop after n − s steps, we are left
with s vertices, and similarly to what we did in Eq. (44) we can
guarantee that any fixed minimum cut survives with probability at
least

n−s−1

∏
i=0

n − i − 2
n − i

=
n

∏
j=s+1

j − 2
j

=
s(s − 1)
n(n − 1)

If we choose s = n√
2
+ 1, we get

Pr[C survives these n − s steps] ≥ 1
2

.

So this answers (1): we should stop once only n√
2
+ 1 vertices re-

main. Then, even if there was only a single minimum cut C in the
original graph, it will have survived with probability at least 1/2.
But turning to question (2): what to do afterwards?

We reduced the size of the problem by a constant factor, from n
vertices to ≈ n√

2
. In the absence of a better idea, this seems to call

for a recursive approach. “When in doubt, recurse”

First, the base case: we can only recurse if we make progress at
each call, and that can only happen if⌈

n√
2
+ 1

⌉
> n

and that is only true for n ≥ 7. This gives us our base case: if
n ≤ 6, we will just compute a minimum cut by brute force (in
constant time).

Second, 1/2 probability is much better than ≈ 1/n2, but it is
still small: for a recursive approach, dropping our probability of
success by such a constant factor at each recursive step could be
bad. But if we have a probability of success at least 1/2, repeating
the first stage twice might not be a bad idea: we would have two
different multigraphs G1 , G2 on s ≈ n√

2
vertices, each of them

(independently) still containing a minimum cut with probability at
least 1/2. “In expectation”, at least 2 · (1/2) = 1 still will have a
minimum cut. This gives us our algorithm, given in Algorithm 12.
To analyse this KargerStein algorithm, we need to establish
its running time T(n) and its probability of success p(n). The
running time turns out to be the simplest: we have two calls to
ModifiedKarger, which (as in Algorithm 10) each take time
O(n2); following by two recursive calls on instances of size s ≈
n/
√

2. Ignoring the ceiling for simplicity, this gives the recurrence
relation

T(n) = 2T(n/
√

2) + O(n2) (45)

lecture 5: graph algorithms 67

Algorithm 12: The Improved Karger–
Stein Min-Cut algorithm.1: procedure ModifiedKarger(G = (V , E), s)

2: while |V | > s do
3: Pick an edge e ∈ E uniformly at random
4: Contract it, and let G ← G/e

5: return G

6: procedure KargerStein(G = (V , E))
7: if |V | ≤ 6 then
8: return a minimum cut ▷ Brute-force computation

9: Set s ←
⌈

n/
√

2 + 1
⌉

10: ▷ Contraction
11: G1 ← ModifiedKarger(G, s)
12: G2 ← ModifiedKarger(G, s)

13: ▷ Recursion
14: C1 ← KargerStein(G1)

15: C2 ← KargerStein(G2)

16: return the smallest cut among C1 , C2

which solves to T(n) = O(n2 log n) via the standard techniques. Verify it, e.g., with the Master Theo-
rem; or, even better, without it.

The probability of success p(n) is trickier. From our setting of s,
we know that G1 still contains a minimum cut with probability at
least 1/2: whenever that happens, C1 will be a minimum cut if the
recursive call to KargerStein is successful, which itself happens
with probability at least p(n/

√
2). That is,

Pr[C1 is a minimum cut] ≥ 1
2
· p
(

n√
2

)
Similarly, looking at G2 we have Pr[C2 is a minimum cut] ≥ 1

2 ·
p(n/

√
2). Since we are taking the best of C1 , C2 on Line 16, the

algorithm succeeds unless neither of C1 , C2 is a minimum cut:

p(n) = 1 − (1 − Pr[C1 is a minimum cut])(1 − Pr[C2 is a minimum cut])

≥ 1 −
(

1 − 1
2

p
(

n√
2

))2

We are left with the task of solving this recurrence relation on p(n),
with the base cases p(n) = 1 for n ≤ 6.

Claim 27.1 ((⋆⋆)). The recurrence relation

p(n) ≥ 1 −
(

1 − 1
2

p
(

n√
2

))2

has solution p(n) = Ω(1/ log n).

Proof. Write n =
√

2
t

for t ≥ 1. Expanding the square, this boils
down to analysing the recurrence relation

p(
√

2
t
) ≥ p(

√
2

t−1
) − 1

4
p(
√

2
t−1

)2

68 comp4

5
270: randomised and advanced algorithms

or, equivalently (reparameterizing by setting f (t) = p(
√

2
t
) ∈

[0, 1]),

f (t) ≥ f (t − 1) − 1
4

f (t − 1)2 . (46)

Note that the function x 7→ x− 1
4 x2 is increasing on [0, 1]: this will (⋆⋆) Another “rabbit-out-of-the-

hat” proof: set g(t) = 4
f (t) − 1, and

substitute in the inequality. Solve the
resulting inequality.

come handy later. We will show by induction on t that f (t) ≥ 1
t+2 .

• This is true for t = 0, since f (0) = p(1) = 1.

• Assuming it is true for t− 1, we have

f (t) ≥ f (t− 1)− 1
4

f (t− 1)2

≥ 1
t + 1

− 1
4

(
1

t + 1

)2

(induction hypothesis and x 7→ x− 1
4 x2 increasing)

=
4t + 3

4(t + 1)2 =
1

t + 2
+

3t + 2
4(t + 1)2(t + 2)

≥ 1
t + 2

concluding the induction proof.

Recalling that n =
√

2
t
, we have t = 2 log n, and the above shows

that p(n) ≥ 1
2 log n+2 = Ω

(
1

log n

)
, as claimed.

What we have shown can be summarised as follows:

Theorem 28. The Karger–Stein algorithm (Algorithm 12) runs in
time O(n2 log n), and returns a minimum cut with probability at least
Ω(1/ log n).

Moreover, with exactly the same approach as for Theorem 27 Exercise: prove it!

(using Theorem 28 and setting T = O(log n · log(1/δ))), we get

Corollary 28.1. For any δ > 0, the “Best-of-T” version of the Karger–
Stein algorithm returns a minimum cut with probability at least 1− δ,
and runs in time O

(
n2 log2 n log(1/δ)

)
.

This is now typically much faster than the O
(

mn log n2

m

)
running

time of the deterministic algorithm! Specifically, as long as the graph is
even mildly dense, i.e., m≫ n log n.

Remark 28.1. There is a different deterministic algorithm, due
to Stoer and Wagner 21 and not based on computing maximum 21 Mechthild Stoer and Frank Wagner.

A simple min-cut algorithm. J. ACM,
44(4):585–591, 1997

flows, with the running time O
(
mn + n2 log n

)
(slightly better

than O
(

mn log n2

m

)
, but still worse than Theorem 27). Interestingly,

this algorithm also works by performing some type of contraction
(merging two carefully selected vertices at each step).

How many minimum cuts are there?

The Min-Cut question we have considered so far asks to find a
minimum cut in a graph G: any minimum cut. There is always at
least one minimum cut, but could there be more? How many, at
most?

lecture 5: graph algorithms 69

• Θ(n)?

• Θ(n2)?

• Θ(2n)?

• Something else?

And how to prove it?

Fortunately, we already have the answer, and done the proof. We
just did not realise it at the time! This is a beautiful example where
analysing an algorithm establishes a structural result, almost “as a
side effect.”

Taking a step back: in order to prove Theorem 26, we have
shown that if C is a minimum cut of G, then Algorithm 10 outputs
C with probability at least

2
n(n − 1)

=
1
(n

2)

This means that if there exists M distinct minimum cuts in the
graph G, the probability to output one of them is at least

Pr
[

Karger(G) outputs
one of C1 ,...,CM

]
=

M

∑
i=1

Pr[Karger(G) outputs Ci] ≥
M
(n

2)

But probabilities are at most one, so Pr
[

Karger(G) outputs
one of C1 ,...,CM

]
≤ 1.

Which means that

M ≤
(

n
2

)
and we get the following “for free”:

Theorem 29. An undirected graph G = (V , E) on |V | = n vertices has
at most (n

2) minimum cuts.

This is quite surprising, since every graph on n vertices has Do you see why?

exactly 2n−1 − 1 distinct (not necessarily minimum) cuts. As usual,
we can ask whether this (n

2) bound is tight: and the answer is yes,
as there exist some n-vertex graphs with that many minimum cuts.
A simple example is a cycle on n vertices, where choosing any 2
edges out of n defines a distinct minimum cut: see Fig. 12.

Minimum Spanning Tree in Expected Linear Time

Another classic and fundamental graph problem is the minimum
spanning tree one, which, given a connected weighted graph G, asks
to find a spanning tree with minimum total weight: A spanning tree of a graph G is a

connected subgraph of G with no
cycle. A spanning forest is the same
thing without the requirement to be
connected.
A minimum spanning forest (MSF) is
the equivalent of an MST when the
graph is not connected: it asks for
a collection of MSTs, one for each
connected component of the graph.

Minimum Spanning Tree (MST): Given an (undirected)
connected graph G = (V, E) on n vertices and m edges with
positive weights w : E → R+, output a spanning tree T min-
imising w(T) = ∑e∈T w(e).

70 comp4

5
270: randomised and advanced algorithms

Figure 12: The cycle graph C16 on
16 vertices, along with a specific
(mininum) cut (defined by the two
red edges). Any choice of two edges
creates a different minimum cut of the
graph: there are (16

2) such choices.

As in the previous section, you most likely remember from pre-
vious algorithms class that we have deterministic algorithms to solve
this efficiently: log∗ is the iterated logarithm, an

incredibly slow-growing function
defined as “the number of times one
must apply the logarithm to reach a
value at most 1:”

log∗ x =

{
0 if x ≤ 1
1 + log∗ log x otherwise.

log∗ n still goes to infinity as n grows,
but very slowly.

• Kruskal’s algorithm solves it in time O(m log n)

• Prim’s algorithm solves it in time O(m log n) when implemented
with a heap, or, better, O(m + n log n) using a Fibonacci heap

• Borůvka’s algorithm solves it in time O(m log n)

• the Fredman–Tarjan algorithm solves it in time O(m log∗ n)

• Chazelle’s algorithm solves it in time O(mα(m, n)) α is the inverse Ackermann function,
which grows even slower.

The key point is that these algorithms (or their analysis) get more
and more involved as we go down the list, and that no deterministic
algorithm running in linear time (that is, O(m)) is known.

There is, however, a randomised algorithm for MST running in
expected linear time, due to Karger, Klein, and Tarjan 22. We will 22 David R. Karger, Philip N. Klein, and

Robert Endre Tarjan. A randomized
linear-time algorithm to find minimum
spanning trees. J. ACM, 42(2):321–328,
1995

not go through its description and analysis in detail, but will only
provide the key building blocks.

From now on, we will assume for convenience that all the
weights {w(e)}e∈E are distinct. This is to make sure we can break
ties consistently, and is without loss of generality. One nice conse- A standard way to implement consis-

tent tie-breaking when some weights
are equal is to do so using the lexico-
graphic order of the edges.

quence of this assumption is that the MST is now unique: there can
be only one!

Can you see why?The main idea behind the algorithm can be summarized like this:

If we had a way to remove most edges from G without affecting
its MST, then we could recurse on a much sparser graph G′.

The question here is how to efficiently remove “most edges” (in
expectation) without killing the MST in the process.

lecture 5: graph algorithms 71

The first building block we need to answer this are the cut and
cycle properties, which underly the proof (and ideas) behind Prim’s
and Borůvka’s algorithm (cut property), and Kruskal’s algorithm
(cycle property):

Cut property. Let S ⊆ V be any subset of vertices, and let e
be the minimum-weight edge with exactly one endpoint in S.
Then the MST of G contains e.

Cycle property. Let C ⊆ E be any cycle, and let e be the
maximum-weight edge belonging to C. Then the MST of G
does not contain e.

We will require the definition of an edge being “heavy” with
respect to a forest:

Definition 29.1. For any weighted graph G = (V , E) and forest
F ⊆ E of G, we say that an edge e ∈ E \ F is F-heavy if (1) adding
e to F creates a cycle, and (2) e is the maximum-weight edge of that
cycle.

From the cycle property, we readily get the following fact:

F-heaviness property. Let F ⊆ E be a forest of G, and let
e ∈ E \ F be an F-heavy edge. Then the MST of G does not
contain e.

This looks promising: what this says is that if we have a forest
(any forest!) F of G, we can safely remove all F-heavy edges from
G without killing the MST. This sounds exactly like what we are
hoping for! Provided, of course, that we can (1) efficiently find all
F-heavy edges, and (2) that there are many of them.

The second building block ensures that, at least, we can do (1):

Fact 29.1. There exists a deterministic algorithm MSTVerification
23,24 23 Brandon Dixon, Monika Rauch,

and Robert Endre Tarjan. Verification
and sensitivity analysis of minimum
spanning trees in linear time. SIAM J.
Comput., 21(6):1184–1192, 1992

24 Valerie King. A simpler minimum
spanning tree verification algorithm.
Algorithmica, 18(2):263–270, 1997

which, on input a graph G = (V, E) with weights w and a forest F of G,
outputs the set of F-heavy edges of G in time O(m + n).

This type of algorithms is typically
used to check whether a given tree is
really an MST, hence the name “MST
Verification.”

To third and last building blocks will take care of (2). The idea
here is that we already had the MST T (which we can see as a for-
est), then by the cycle property every edge e ∈ G \ T is T-heavy: and
so we could use Fact 29.1 on T to find (and remove) m− n+ 1 edges
from G in time O(m + n). That would be amazing progress – but of
course, we do not have T, that’s the thing we are trying to compute!

What we could do, however, is computing the MST T′ of a small
random subgraph G′ of G, and use that as our “guiding forest” to
find which heavy edges to remove from G. If G′ has sufficiently few
edges and vertices (for instance, m/2 and n/2) then we can com-
pute its MST T′ recursively. So to do that, we need to “sparsify” G:
both in terms of vertices and edges.

72 comp4

5
270: randomised and advanced algorithms

For the edges, this is easy: given a graph G = (V, E), we can
build a new graph G′ with (in expectation) much fewer edges by
keeping each edge of E independently with probability p ∈ [0, 1]:
this gives us G′ = (V, E′) with E[|E′|] = p|E|. Our third building
block tells us what happens to the MST25 when we do that: is the 25 Or, rather, maximum spanning forest

(MSF), since randomly removing some
edges might have disconnected G′.

MSF of G′ still “good”?

Lemma 29.1 (Random Subsampling Lemma). Let G′ = (V, E′) be
a subgraph of G = (V, E) obtained by subsampling each edge e ∈ E
independently with probability p ∈ [0, 1], and F ⊆ E′ be the MSF of G′.
Then the expected number of edges in G that are not F-heavy is at most
|V|
p .

We leave the proof of this lemma as an exercise. The crucial part (⋆⋆) Exercise!

of the statement is that we compute F as the MSF of the sparser
graph G′ but get a guarantee on the number of F-heavy edges with
respect to the original graph G.

To sparsify G in terms of vertices, the last building block we
need is Borůvka’s algorithm, or, rather, what happens when we run
it only for a couple iterations: Algorithm 13.

Algorithm 13: t-step version of
Borůvka’s algorithm1: procedure BoruvkaStep(G = (V, E), t)

2: F ← ∅ ▷ F stands for “Forest”
3: for 1 ≤ i ≤ t do
4: for all v ∈ V do
5: Find the lightest edge e ∈ E incident to v:

e← argmin{w(v, u) : (v, u) ∈ E}

6: Contract it, and let G ← G/e
7: F ← F ∪ {e} ▷ Add it to F

8: for all u, v ∈ V do ▷ In the new graph
9: if u, v are connected by more than one edge then

10: only keep one with the smallest weight

11: return (G, F) ▷ New graph and forest of contracted edges

Lemma 29.2. The t-step version of Borůvka’s algorithm, on input a
connected graph G = (V, E), returns a new graph G′ = (V′, E′) such
that |V′| ≤ |V|/2t, and runs in time O(t ·m).

Proof sketch. Each step can be implemented to run in time O(m);
and at each step, each vertex is contracted with at least one other, so
the total number of vertices decreases by at least a factor 2.

Here t ≥ 1, p ∈ [0, 1] are parameters we
will get to choose for things to work
out.

At this point, we finally have all we need for the algorithm. To
summarise our strategy:

1. Sparsify G in terms of vertices, to go from n to n′ = n/2t: this One can check that adding F1 to an
MSF of G1 gives the MST of G, so it
remains to find an MSF of G1.

gives a graph G1 on n′ vertices (and a leftover forest F1 of con-
tracted edges)

lecture 5: graph algorithms 73

2. Sparsify G1 in terms of edges, to go from m to m′ ≤ pm (in
expectation: this is the only random step): this gives a graph G2

on n′ vertices and m′ edges

3. Recursively find the MSF F2 of G2: this should be less expensive,
as G2 is smaller than G

4. Find all the F2-heavy edges in G1, and remove them from G1 to
get a graph G3: there should be many by Lemma 29.1, and can
be done efficiently by Fact 29.1

5. Recursively find the MSF F3 of G3: this should be less expensive,
as G3 is smaller than G: and this is also the MSF of G1

6. return T = F1 ∪ F3 as the MST of G
If we are lucky, we remove many
edges and get m′ ≪ m and also end
up with many F3-heavy edges, so the
recursive calls will be faster. If we are
unlucky, the recursive calls will be on
bigger graphs, and so will be slower.

It is worth pointing out that the only random step in the above
strategy is Step 2, and it does not affect correctness: it only affects
the running time.

We can finally state the algorithm itself: To analyse it, we need
Algorithm 14: The Karger–Klein–
Tarjan (KKT) Algorithm: MST in
expected linear time1: procedure Subsample(G = (V, E), p)

2: E′ ← ∅
3: for all e ∈ E do ▷ Independently for each edge
4: Add e to E′ with probability p

5: return G′ = (V, E′)

6: procedure LinearTimeMST(G = (V, E), t, p)
7: if |V| ≤ 2 then return G ▷ Base case

8: G1 ← BoruvkaStep(G, t)
9: G2 ← Subsample(G1, p)

10: F2 ← LinearTimeMST(G2, t, p) ▷ Recursive call
11: H ← MSTVerification(F2, G1) ▷ Find F2-heavy edges
12: G3 ← (V1, E1 \ H) ▷ Remove them from G1

13: F3 ← LinearTimeMST(G3, t, p) ▷ Recursive call
14: return F1 ∪ F3

to establish its correctness and expected running time. We will
only do the second, as correctness follows from the discussion and
lemmas above.26 26 Please check and establish it, this is a

good exercise.The expected running time T(m, n) can be decomposed into the
time taken by Lines 8, 11 and 12, which by Fact 29.1 and Lemma 29.2
take total time O(m + n) + O(tm) = O(t(m + n)); and the time of
the two recursive calls, which take time T(|E2|, |V2|) + T(|E3|, |V3|).
Now, |V1| = |V2| = |V3| ≤ n/2t by Lemma 29.2, and this is de-
terministic (comes from the Borůvka step); but |E2| and |E3| are
random. All we know is that |E1| ≤ m but is not necessarily equal

to m, as the Borůvka step might have
(deterministically) removed a few
edges during the contractions.

E[|E2|] = p|E1| ≤ pm (47)

because of subsampling, and that by Lemmas 29.1 and 29.2

E[|E3|] ≤
|V1|

p
≤ n

p2t . (48)

74 comp4

5
270: randomised and advanced algorithms

So we have, for some absolute constant C > 0, that

T(m, n) ≤ C · t(m + n) + E[T(|E2|, |V2|)] + E[T(|E3|, |V3|)] (49)

where the expectation is over the randomness of the subsampling
of the edges (Line 9). Let us show by induction that

T(m, n) ≤ C′ · (m + n)

for some suitable constant C′ > 0. The base case is easy, since Al-
gorithm 14 runs in constant time for n ≤ 2 (our recursive base
case). Now, for the induction, assume this holds for all (m, n) with
m′ < m and n′ < n: Eq. (49) gives

T(m, n) ≤ Ct(m + n) + E
[
C′(|E2|+ |V2|)

]
+ E

[
C′(|E3|+ |V3|)

]
≤ Ct(m + n) + C′

(
E[|E2|] +

n
2t + E[|E3|] +

n
2t

)
(Bound on |V2|, |V3|)

≤ Ct(m + n) + C′
(

pm +
n

p2t +
2n
2t

)
(Eqs. (47) and (48))

= (Ct + C′p)m +

(
Ct + C′

2 + 1/p
2t

)
n (50)

One can check that setting t = 3, p = 1/2, Eq. (50) becomes Check what happens for other choices
of t and p: for instance, can you choose
t = 2? (This corresponds to only doing
two rounds of the Borůvka step.) What
about t = 1?

T(m, n) ≤ (3C + C′/2)(m + n)

which gives T(m, n) ≤ C′(m + n) as long as C′ ≥ 6C. This con-
cludes the proof by induction, and the proof of the theorem:27 27 Modulo the parts we left as an

exercise.
Theorem 30. The Karger–Klein–Tarjan algorithm (Algorithm 14) com-
putes a minimum spanning tree (MST) of an n-vertex, m-edge undirected
connected graph in expected O(m) time.

To conclude, one last thing left as an exercise: can you convert this
Las Vegas algorithm into a high-probability Monte-Carlo one?

