
Lecture 4: Derandomisation

Sometimes, having a randomised algorithm is wonderful, but what
we really need is a deterministic version that achieves the same
guarantees, but without the drawback of randomness: that is, we
want the output to always be good (unlike Monte Carlo-type algo-
rithms), and the running time to always be bounded (unlike Las
Vegas-type algorithms). That is, we would like to be able, given any
randomised algorithm A, to “derandomise” it into an equally-good
(or not much worse) deterministic version A ′ . Can we achieve that?

Unsurprisingly, the answer is a resounding “we don’t know.” This is actually very much tied to
one of the central questions in com-
putational complexity, the P vs. BPP
question.

However, we do have some (limited) techniques to do so, in par-
ticular cases. Here, we will see two of them: the small random seed
approach and the method of conditional expectations.

To illustrate this, we will consider as running example the “maxi-
mum cut” question:

Max-Cut: Given an (undirected) graph G = (V, E) on n
vertices and m edges, output a cut (A, B) (partition of V) max-
imising the number c(A, B) of edges between A and B.

Of course, we would like an efficient algorithm for that. As a
baseline, one could try to “just” find a good algorithm to solve the
problem. Unfortunately, this is very unlikely to pan out:

Fact 21.1. Max-Cut is NP-Hard.

This is annoying, as this strongly hints we should give up on
trying to find an efficient algorithm (deterministic, but, also, ran-
domised – this is most likely very hard too) for Max-Cut. An exact
algorithm, at least: but maybe we can get a good approximation algo-
rithm?8 8 Recall that an α-approximation

algorithm is an algorithm whose
output’s value is within a factor α > 0
of the optimal solution’s value.

Here is an obvious randomised algorithm: choose a cut (A, B)
uniformly at random. Or, with more words and in pseudocode:

Algorithm 6: Randomised algorithm
for Max-Cut.1: (A, B)← (∅, ∅)

2: for all v ∈ V do
3: Xv ← Bern(1/2) ▷ Independent of previous choices
4: if Xv = 1 then add v to A
5: else add v to B

6: return (A, B)

52 comp4

5
270: randomised and advanced algorithms

Is it any good? Maybe surprisingly, not too bad: in expectation,
what it returns is a cut with at least half as many edges as the best
possible:

Theorem 22. For every G = (V, E), the output (A, B) of Algorithm 6
satisfies

E[c(A, B)] ≥ 1
2

m ≥ 1
2

OPT(G) .

Moreover, the algorithm runs in time O(n).

Proof. The proof is immediate by linearity of expectation. Fix any
edge e ∈ E and let Xe denote the indicator random variable “e is
a cut edge” (that is, one end is in A, the other in B). It is easy to
check that E[Xe] = 1/2 (both endpoints are in A with probability
1/2 · 1/2 = 1/4, same for both endpoints in B, so an edge crosses
with probability 1/2).

Rewriting c(A, B) = ∑e∈E Xe, by linearity of expectation, we get

E[c(A, B)] = E

[
∑
e∈E

Xe

]
= ∑

e∈E
E[Xe] = ∑

e∈E

1
2
=

m
2

and the last part of the statement follows from observing that the
best possible cut cannot have more than m edges.

Can we convert Algorithm 6 into a deterministic (and still effi-
cient) algorithm?

Method 1: derandomizing the random seed

Let us get back to the view of a randomized algorithm from the
first lecture, as an “algorithm A taking an input x and a string of
uniformly random bits r ∈ {0, 1}∗.” Imagine (1) A has a positive
probability of returning a good solution; (2) we have a worst-case
bound R on the randomness complexity of our algorithm, i.e., on
the maximum number of random bits it would every need on any
input x; and (3) that, given a solution y to the task, that we can
verify efficiently whether y is a good solution – say, by running
another algorithm V on (x, y).

Then the claim is that the following algorithm is a deterministic
algorithm that finds a good solution:

Algorithm 7: Derandomization ap-
proach (by brute-forcing over the
random seed)Require: Input x

1: for all r ∈ {0, 1}R do
2: y← A(x; r) ▷ Run A on x with randomness r
3: if V(x, y) = 1 then ▷ Verify if y is a good solution
4: return y ▷ If so, we are done

The fact that Algorithm 7 always returns a good solution, under
our assumptions (1), (2), and (3), is immediate: there exists some
choice of the randomness r for which A returns a good solution on Importantly, this “good random seed”

r may not be the same for all x.

lecture 4: derandomisation 53

input x; once we try this particular r in the loop, then we get a good
solution y, and the verifier V successfully detects it.

There is, of course, a catch:

Fact 22.1. Algorithm 7 runs in time 2R(TA + TV), where TA , TV are
the running times of the algorithm A and verifier V.

In particular, given that R could be quite large (the only a priori
bound we have is R ≤ TA), this could be really bad even if A and V Can you see why?

are efficient: exponential in the input size, or even worse.

So what to do? One hope we may have is to get a much better
bound on R for some specific algorithms, or even to slightly modify
these algorithms to make sure R is small. For instance, if we can
design a randomised algorithm which only needs say R ≤ 2 log n
bits of randomness on inputs of size n, then we get 2R = n2: that’s
polynomial!

Looking back at Algorithm 6, it seems like we are using an awful
number of random bits: one for each vertex v ∈ V , so R = n in
total. That is definitely not great. And yet, do we actually need this
many independent random bits? Could we do with a much smaller
number and use something like hash functions? Hash functions are essentially magic:

when you know how to use them, they
are incredible. When you don’t, you
end up with a third arm growing out
of your ear.

The only part of the proof of Theorem 22 where we used the
randomness was to argue that each edge e = (u, v) is a cut-edge
with probability 1/2. This argument requires independence of
the two random bits involved: the random bit Bu for u, and the
random bit Bv for vertex v. That is all:

As long as Bu and Bv are independent for each of the (n
2) pairs of

distinct vertices (u, v), the proof goes through!

That is called pairwise independence, and this is a much weaker
requirement than (full) independence. In particular, we can use
good hash functions to get pairwise independence very cheaply –
to see how, let us introduce a key definition: Importantly, here x, x′, y, y′ are not

random! We pick a hash function h
at random and see where it sends the
inputs. So h is a randomly picked hash
function (among the |H| choices), not a
“random function”: once h is picked,
there is nothing random anymore.

Definition 22.1. A family of functions H ⊆ {h : X → Y} is a
family of pairwise independent hash functions, or a strongly universal
hash family, if, for every x, x′ ∈ X with x ̸= x′ and every y, y′ ∈ Y ,

Pr
h∼H

[
h(x) = y, h(x′) = y′

]
=

1

|Y|2

where the probability is over the uniformly random choice of h ∈
H.

Why does that help? Take the example of X = [n] and Y =

{0, 1} in the definition above. Picking a hash function h ∈ H uni-
formly at random only takes log |H| truly independent random
bits. But with these log |H| random bits, we obtain |X | = n random
bits

h(1), h(2), . . . , h(n) ∈ {0, 1}

54 comp4

5
270: randomised and advanced algorithms

which are not fully independent, but such that any two of them be-
haves exactly like a pair of uniformly random bits. This is exactly what
we need! The only missing part is: do there exist “small” families of Small enough, because we want to use

as few “true” random bits as possible,
and that will cost us log |H| of them.

pairwise independent hash functions H ⊆ {h : [n]→ {0, 1}}?

Fact 22.2. There exists an explicit9 family of pairwise independent hash 9 Easy to construct and use. We will
prove it in the tutorial!functions H ⊆ {h : [n]→ {0, 1}} with |H| = 2⌈log(n+1)⌉.

This is great news! Now we can modify Algorithm 6 to first
pick h uniformly at random from this specific H (this only requires
R ≤ ⌈log(n + 1)⌉ bits of randomness), and then use Xv ← h(v) as
random coin toss for vertex v in Line 3.

Algorithm 8: (Modified) Randomised
algorithm for Max-Cut to use a small
random seed.1: (A, B)← (∅, ∅)

2: Draw h : V → {0, 1} uniformly at random from the H promised
by Fact 22.2, using R = ⌈log(n + 1)⌉ random bits

3: for all v ∈ V do
4: Xv ← h(v) ▷ Pairwise independence
5: if Xv = 1 then add v to A
6: else add v to B
7: return (A, B)

By pairwise independence, the proof of correctness of this (mod-
ified) Algorithm 6 goes through exactly as in Theorem 22, but now
we use much fewer random bits. . . So, when derandomising the
algorithm via Algorithm 7, we only pay a factor

2R = 2⌈log(n+1)⌉ ≤ 2(n + 1) = O(n)

What about the rest? Well, we saw already that TA = O(n). As
for the time TV it takes to verify a cut (A, B) has size at least m/2,
this is TV = O(m + n), and so by Fact 22.1 our “derandomised
algorithm” has running time at most

2R(TA + TV) = O(n(m + n)) .

Not bad. But we are missing a small part: one of the assumptions
required to derandomise using Algorithm 7 was “(1) A has a pos-
itive probability of returning a good solution.” We never checked
this: all we know is that our randomised algorithm, Algorithm 8,
returns a solution that is good (i.e., with value at least 1

2 m) in ex-
pectation. Does that mean it has a positive probability of returning a
good solution?
Thankfully, yes: it can be arbitrarily small, but it is positive: Put differently: “a random variable

cannot always be strictly below its
expectation.”

lecture 4: derandomisation 55

Fact 22.3. If X is a random variable such that E[X] exists, then Pr[X ≥ E[X]] >

0.

Proof. Given a random variable X with finite expectation µ :=
E [X], we have 1{X<µ} + 1{X≥µ} = 1. If Pr[X < µ] = 1; then

µ = E [X] = E
[

X1{X<µ}

]
+ E

[
X1{X≥µ}

]
< E

[
µ1{X<µ}

]
+ E

[
X1{X≥µ}

]
≤ µ Pr[X < µ]︸ ︷︷ ︸

≤µ

+E
[

X1{X≥µ}

]
.

As Pr[X ≥ µ] = 0 we have 1{X≥µ} = 0 (always), so the second
term is zero; and as a result we get µ < µ, a contradiction.

Putting it all together, what we have done is going from Algo-
rithm 6 (randomised algorithm) to Algorithm 8 (randomised algo-
rithm using much fewer random bits) to a deterministic algorithm
(using the general technique of Algorithm 7). This establishes the
following:

Theorem 23. There exists a deterministic algorithm A ′ for Max-Cut

such that, for every G = (V , E), the output (A, B) ofA ′ satisfies

c(A, B) ≥ 1
2

m ≥ 1
2

OPT(G) .

Moreover, the algorithm runs in time O(n max(m, n)).

Method 2: the method of conditional expectations

In some cases, the algorithm does need a lot of random bits, and
there is no clear way to bring the randomness complexity R down.
In these cases, there is (sometimes) an other option to use: the
method of conditional expectations,10 which we will see now in the 10 This is also sometimes called the

method of conditional probabilities.context of our randomised algorithm for Max-Cut, Algorithm 6.
The method of conditional expectations essentially consists in

looking at the sequence of random choices our algorithm made,
and replacing these random choices one by one with deterministic
choices which are always “at least as good as what the random
choice would give in expectation.”

Specifically, our randomised algorithm flips one coin per vertex,
and the way we wrote it in Algorithm 6 it is doing so one vertex at
a time.11 Instead of flipping a coin, make the best greedy decision 11 Note that in Algorithm 6, and Al-

gorithm 8, we could actually make all
these random choices in parallel. With
this method though, we will need to
make our choices sequentially.

for the current bit to choose. For simplicity, let’s order the vertices
as v1, v2, . . . , vn, and write Xi ∈ {0, 1} for the bit Xvi that tells us if
vi ∈ A.

What we will do first is set X1 deterministically, say, without
loss of generality, to 1. Then we will choose X2 to ensure whatever
choice we make does not decrease the expectation of c(A, B) (over the
remaining choices X3, . . . , Xn, if we were to choose those uniformly
at random). That is, we want to find an (efficiently computable, and

56 comp4

5
270: randomised and advanced algorithms

deterministic) rule that tells us how to set Xi+1 based on our pre-
vious choices X1, . . . , Xi, which would ensure that the conditional
expectation of c(A, B) does not decrease:

E[c(A, B) | X1, . . . , Xi]
want
≤ E[c(A, B) | X1, . . . , Xi+1] (36)

If we had that, we would be in good shape, since then

m
2

= E[c(A, B)]

≤ E[c(A, B) | X1]

≤ E[c(A, B) | X1, X2]

≤ . . .

≤ E[c(A, B) | X1, X2, . . . , Xn]

and that very last term is the value of the cut we finally obtain
once we have (deterministically) chosen X1, X2, . . . , Xn: there is no
randomness left or choice remaining to make, we just have our cut
(A, B)!

So how do we do this “derandomisation”? What is the rule we
should follow to choose Xi+1 based on previous choices in order to
guarantee (36) holds? Observe that, for any given 1 ≤ i ≤ n− 1,

E[c(A, B) | X1, . . . , Xi]

= Pr[Xi+1 = 0]E[c(A, B) | X1, . . . , Xi, Xi+1 = 0]

+ Pr[Xi+1 = 1]E[c(A, B) | X1, . . . , Xi, Xi+1 = 1]

=
1
2

E[c(A, B) | X1, . . . , Xi, Xi+1 = 0] +
1
2

E[c(A, B) | X1, . . . , Xi, Xi+1 = 1]

≤ max(E[c(A, B) | X1, . . . , Xi, Xi+1 = 0], E[c(A, B) | X1, . . . , Xi, Xi+1 = 1])

where the last inequality uses that x+y
2 ≤ max(x, y). So if we had a

way to efficiently compute the two quantities

E[c(A, B) | X1, . . . , Xi, Xi+1 = 0]

and
E[c(A, B) | X1, . . . , Xi, Xi+1 = 1]

we could just greedily pick the choice of Xi+1 corresponding to the
maximum of the two, and we would be done.12 12 Technically, we don’t even need to

compute the two values, we just need
to have a way to figure out which one
of the two is largest.

Luckily: here, we can. Let’s take a step back: once we have al-
ready chosen X1, . . . , Xi, we have decided where to put the first i
vertices v1, . . . , vi: either in A, or not. Then, our choice for Xi+1 can
only affect the edges with one endpoint being vi+1, so our decision
can only impact two types of edges, depending on where their other
endpoint is: Phrased differently: at any given stage,

c(A, B) is the sum of the contribution
of the edges already committed to
(both endpoint vertices have been
assigned to A, B), and those still open
(at least one vertex endpoint not
decided yet). The first contribution
is fixed, and the expectation of the
second is still 1

2 for each edge.

• that endpoint is a vertex in v1, . . . , vi: our choice for vi+1 will
fully determine whether these edges contribute to c(A, B) or not.

• that endpoint is a vertex in vi+2, . . . , vn: our choice for vi+1 will
leave open whether these edges contribute to c(A, B). That deci-
sion will only be made in the future, separately for each of these

lecture 4: derandomisation 57

edges, when making the choice of whether to put that second
endpoint into A.

When we set Xi+1, we only “commit” on the edges of the first type,
and that’s all. Therefore, the best rule is to choose Xi+1 (whether to
put vi+1 in A) in order to maximise the number of edges of the first
kind that contribute to c(A, B). This is easy to do in O(m) time: for
each of the two options for Xi+1, count the number of edges of the
form (vj, vi+1) with 1 ≤ j ≤ i that would contribute to the cut:

NA(i + 1) =
∣∣{ 1 ≤ j ≤ i : (v j , vi+1) ∈ E and v j ∈ B

}∣∣ (37)

NB(i + 1) =
∣∣{ 1 ≤ j ≤ i : (v j , vi+1) ∈ E and v j ∈ A

}∣∣ (38)

(39)

and pick whichever of the two options for which that number is the
biggest! This will ensure (36) holds.

Algorithm 9: Derandomised algorithm
for Max-Cut using the method of
conditional expectations.1: (A, B) ← (∅, ∅)

2: Order the vertices as v1 , . . . , vn (arbitrarily)
3: for all 1 ≤ i ≤ n do
4: Compute NA(i), NB(i) as in Eqs. (37) and (38)
5: if NA(i) ≥ NB(i) then add vi to A
6: else add vi to B

7: return (A, B)

Overall, what we have shown is the following:

Theorem 24. There exists a deterministic algorithm A′′ (Algorithm 9)
for Max-Cut such that, for every G = (V, E), the output (A, B) ofA′′

satisfies

c(A, B) ≥ 1
2

m ≥ 1
2

OPT(G) .

Moreover, the algorithm runs in time O(nm).

We have seen two general derandomisation techniques:

• If we can show our randomised algorithm uses at most R
truly uniformly random bits and any that given solution
can be efficiently checked, then Fact 22.1 and Algorithm 7

provide a way to get a deterministic algorithm “almost as
good”, at the cost of a factor 2R in the time complexity.

• Looking at the analysis of the algorithm, we can often
achieve the first point by using hash functions (only requir-
ing a small truly random seed), provided that the analysis
only uses pairwise, or, more generally, k-wise independence.

• If our algorithm has some nice properties (namely, if can
efficiently compute the conditional expectation of our solu-
tion’s value given any setting of choices made so far), then
the method of conditional expectations provides another
powerful way of derandomising algorithms.

58 comp4

5
270: randomised and advanced algorithms

A further remark. Everything we have said about Max-Cut in this
chapter (and our algorithms) generalises to weighted graphs (and
weighted cuts). Try it!

Fact 24.1. We can do better than 1/2! There exists an 0.878-approximation
algorithm – just not as simple. See Section 6.2 of 13. We believe this is 13 David P. Williamson and David B.

Shmoys. The design of approximation
algorithms. Cambridge University
Press, Cambridge, 2011

optimal, assuming something called the “Unique Games Conjecture”
(UGC): but even without UGC, it is known we cannot do better than
16/17 ≈ 0.94 unless P = NP.

A detour: the Probabilistic Method

Our example above with the first method14 can be viewed an in- 14 When we used Fact 22.3 to convert
the expected guarantee into a non-zero
probability of a good output.

stance of a general proof technique called the probabilistic method.
Namely, to prove existence of something (e.g., a solution to a prob-
lem satisfying some nice properties (“there exists a maximum flow
with integral flows”), or an object of a specific type (“there exists a
bipartite graph such that XYZ”), etc.), there are several ways: one,
very convenient, is to come up with an algorithm which outputs
such an object. The algorithmic does not need to be efficient: if it
outputs something of a particular type, then such things clearly
must exist. This is a constructive way to establish existence.

The probabilistic method... doesn’t do that. Instead, to prove
that there exists some object x (in a big set X) which satisfies some
“good” property P(x), we define a probability distribution D over
X , and then argue that

Pr
x∼D

[P(x) holds] > 0 (40)

that is, an object x ∈ X chosen at random according to D has a
non-zero (maybe very small! But non-zero) probability of being
“good.” Well, if a randomly chosen object happens to be good with
some non-zero probability, that means there must exist some good
objects. . .

The key here is to choose a suitable probability distribution D
over X . This is a bit of an art, but often (when X is a finite set)
considering the uniform distribution over X works.

Here is an example: given a graph G = (V, E), a 2-colouring of the
edges of G is a mapping c : E → {blue, red}. Given a colouring of
the graph, a set of vertices S ⊆ V is said to be monochromatic if all
the edges between vertices of S have the same color: c(e) = red for
all e ∈ E ∩ (S× S), or c(e) = blue for all e ∈ E ∩ (S× S).

Take the complete graph on n vertices. Can we find a colouring
of its edges such that no subset of 2 vertices is monochromatic
(well, no)? No subset of 3 vertices? No subset of k vertices? For
which values of k is that possible?

Theorem 25 (A sufficient condition on k). Fix 0 ≤ k ≤ n such that(
n
k

)
2−(

k
2) <

1
2

lecture 4: derandomisation 59

Then, there exists a 2-colouring of the edges of the complete graph Kn such
that no subset of k vertices is monochromatic.

Proof. Let’s take a random colouring c. More precisely, let’s take a
uniformly random colouring c: each edge e ∈ E is red or blue with
probability 1/2, and chosen independently from all other edge
colours. We want to show that the probability (over the choice of
c) that there is no monochromatic set of size k is non-zero; equiva-
lently, that the probability that there exists (at least) one monochro-
matic subset S of size k is strictly less than 1.

Consider any (fixed) subset S of k vertices. Since S has size k
and we start with the complete graph, there are (k

2) edges between
vertices of S; so the probability that our randomly chosen c makes
S monochromatic is

Pr
[

all edges are blue or
all edges are red

]
= Pr[all edges are blue] + Pr[all edges are red]

=
1

2(
k
2)

+
1

2(
k
2)

=
2

2(
k
2)

where we used independence of the choice across edges to get
(1/2)(

k
2) . That tells us the probability that a given, fixed subset S

is monochromatic. So to bound the probability that this happens
to at least one of them, we use a union bound over all those subsets.
There are exactly (n

k) of them, so by a union bound

Pr
[

there is at least
one monochromatic

subset of size k

]
= Pr

 ⋃
S:|S|=k

{S is monochromatic}


≤ ∑

S:|S|=k
Pr[S is monochromatic]

≤
(

n
k

)
· 2

2(
k
2)

which is strictly less than 1 whenever (n
k)2
−(k

2) < 1
2 . We are done.

Further reading: the (excellent) book by Alon and Spencer15. 15 Noga Alon and Joel H. Spencer. The
probabilistic method. Wiley Series in Dis-
crete Mathematics and Optimization.
John Wiley & Sons, Inc., Hoboken, NJ,
fourth edition, 2016

