
Lecture 3: Balls in Bins

You have m balls, and want to randomly distribute them among

n different bins. Why? That’s a pretty good question: basically,

and you’ll have to believe me for now, this rather strange scenario

(and its many variants) capture a lot of actual interesting or well-

motivated problems. We’ll get back to those.

The things we might care about are (1) the maximum load of the

bins, that is, what’s the maximum number of balls any given bin

contains once we’ve distributed them; (2) the coverage, that is, how

many bins are non-empty; and (3) the collisions, that is, how many

pairs of distinct balls share the same bin.

The simplest thing we can do is throwing our m into the n inde-

pendently and uniformly at random. Let’s see how that goes.

Collisions

One of the most basic things we can ask is whether the m balls will

all fall into their own personal bin, that is, if there’s going to be at

least one bin containing more than one ball. What’s the probability to

get at least one collision?

Interlude: run the Birthday Paradox experiment in the classroom. Dis-

cuss assumptions (uniformity), etc.

Theorem 15 (Birthday Paradox). If you gather 23 people in a room,

then with probability 50% there will be two sharing a birthday.

To prove that, we’ll tackle the more general question, for arbi-

trary m and n, of nding what the probability pm,n of having at

least one collision is: the birthday paradox is for n = 366, because,

of course, 2024 is a leap year, and asks to check that p23,366 ≥ 1/2. That might change in 2025...

Now, the result has to depend on the relation between m and n: if

m ≥ n + 1, then that probability is exactly one, while if n ≫ m this Do you see why? Prove it (Pigeon-
hole).should be less likely.

Theorem 16. The probability pm,n to get at least one collision is equal to

pm,n = 1 − n!

nm(n − m)!
= 1 − m!

nm



n

m



(19)

In particular, for m = 23 and n = 366, this is...? Check it: p22,366 ≈ 0.475, while
p23,366 ≈ 0.506.

34 comp4
5270: randomised and advanced algorithms

Proof.

1− pm,n =
n

n
·
n− 1

n
·
n− 2

n
· · ·

n−m+ 1

n
=

1

nm

m−1

∏
ℓ=0

(n− ℓ)

=
n!

nm(n−m)!

Figure 4: The quantity pm,n

from Eq. (19), plotted here as a func-
tion of m for various choices of n.

Looking at the graph above, it looks like we approach a very

high probability of getting a collision way before m = Θ(n). Any

guess at what m should be to, say, have probability at least 50% of a

collision? Should it be

• Θ(log n)?

• Θ(
√
n)?

• Θ


n
log n



?

• Something else?

And why?

The worst approach: rabbit-out-of-a-hat, no intuition given. Take m =

c ·
√
n for some xed constant c > 0. Plugging this in the expression

lecture 3: balls in bins 35

pm,n obtained in Theorem 16, we get

1− pm,n =
n!

nm(n−m)!
∼

n→∞

1

nm
·

√
2πn



n
e

n



2π(n−m)


n−m
e

n−m (Stirling)

=
1



1− m
n

nn−m

(n−m)n−mem
(“Massaging”)

=
1



1− m
n

1


1− m
n

n−m
em

=
1



1− m
n

1


1− m
n

n
em

·


1− m

n

m

=
1



1− c√
n

1




1− c√
n



√
n
ec


√
n
·



1− c√
n

c
√
n

(Finally!)

the last line using our choice of m. From there, “all” that remains to

check is that limn→∞



1 − c√
n
= 1 (easy), that

lim
n→∞





1 − c√
n



√
n

ec



√
n

= e−c2/2

(less easy), and that Do it!

lim
n→∞



1 − c√
n

c
√
n

= e−c2

(not too hard?) to conclude that

1 − pc
√
n,n ∼

n→∞
1 ·

1

e−c2/2
· e−c2 = e−c2/2

or, equivalently,

pc
√
n,n = 1 − e−c2/2 + o(1)

This shows that the probability to get a collision becomes constant

for m = Θ(
√
n). Now, that’s nice, but you may ask yourself, “Well,

how did I get here?”

Let’s take a step back. So we throw m balls into n bins. Let’s start

with the simplest case possible: let’s throw two balls into n. What’s

the probability that they end up in the same bin? Don’t look immediately! Think about
it rst.

36 comp4
5270: randomised and advanced algorithms

The rst ball falls into a given bin, say the i-th. Then to get a

collision the second ball has to be thrown into the same bin i, which

happens with probability 1/n. So p2,n = 1/n. A more verbose

way to derive it is as follows: let X1 , X2 denote the indices of the

bins  for the rst  and second  ball, respectively. These are

independent r.v.’s, uniformly distributed in [n], so

p2,n = Pr[X1 = X2] =
n

∑
k=1

Pr[X1 = k, X2 = k]

=
n

∑
k=1

Pr[X1 = k] · Pr[X2 = k]

=
n

∑
k=1

1

n
·
1

n
=

n

n2
=

1

n
, (20)

“as foretold.”

Back to the general m balls case. The above tells us that for every

pair of balls, the probability to get a collision (ignoring all other

balls) is 1/n. How many distinct pairs of balls do we have? Well,

(m2). So what’s the expected number of collisions c(m, n)?

c(m, n) = E



 ∑
(i, j) pair

1{Xi=Xj}





= ∑
(i, j) pair

E



1{Xi=Xj}



= ∑
(i, j) pair

Pr


Xi = Xj



= ∑
(i, j) pair

1

n

=



m

2



·
1

n
(21)

where we used linearity of expectation, and our previous compu-

tation for the m = 2 case. This means that the expected number

of collisions grows (roughly) as m2

2n . If we believe that the number

of collisions does not deviate too pathologically from its expected

value, this becomes constant when m = Θ
√

n


. So we should

start expecting collisions when m = Θ
√

n


, which explains (in

hindsight) the result we got before!

But can we easily prove this “intuition”? We have the expectation

c(m, n) of the number of collisions, we want to show that number

(let’s call this random variable C) does not deviate too far from its

expectation. The most basic tools we’ve seen for this are Markov

and Chebyshev’s inequalities: here, we’ll have to use Chebyshev. So Do you see why?

we need to compute the variance of our random variable C:

C = ∑
(i, j) pair

1{Xi=Xj}

where as before Xi is the index of the bin where the i-th ball 

lands, and 1{Xi=Xj}
is the indicator of the event “ball i and ball j

lecture 3: balls in bins 37

collide.” We would like to write that the variance of the sum is the

sum of the variances (“linearity of variance”), something like this

Var[C] = Var



 ∑
(i, j) pair

1{Xi=Xj}





?
= ∑

(i, j) pair

Var


1{Xi=Xj}



which would make our life so much easier, since then, using the

variance of an indicator random variable (Bernoulli), we’d get

Var[C] =



m

2



1

n



1 − 1

n



Unfortunately, variance is not linear: we could write the above
?
=

equality if the indicator variables 1{Xi=Xj}
were independent

(across (i, j)): and this is not the case here. Do you see why they are not indepen-
dent?And yet, since we are showing the bin (for each ball) uniformly at

random, some magic happens, and somehow the above expression

is still true. In the proof below, locate exactly
where we use the fact that the bin is
chosen uniformly.Lemma 16.1 (Well, actually. . . (⋆⋆)). We have

Var[C] =



m

2



1

n



1 − 1

n



Proof. Since Var[C] = E


C2


− E [C]2 and we already have com-

puted E [C], we only are missing the rst term:

E



C2


= E









 ∑
(i, j) pair

1{Xi=Xj}





2






= E



 ∑
(i, j) pair

∑
(k,ℓ) pair

1{Xi=Xj}
1{Xk=Xℓ}





= ∑
(i, j) pair

∑
(k,ℓ) pair

E



1{Xi=Xj}
1{Xk=Xℓ}



This is a little intimidating to compute, but we can make the follow-

ing observations about the summands:

• if the two pairs (i, j), (k, ℓ) are the same,7 then 1{Xi=Xj}
1{Xk=Xℓ}

= 7 When we consider pairs here, we
don’t care about ordering, so (i, j) =
(j, i).1

2
{Xi=Xj}

= 1{Xi=Xj}
, so

E



1{Xi=Xj}
1{Xk=Xℓ}



= E



1{Xi=Xj}



=
1

n
.

There are exactly (m2) such summands.

• if the two pairs (i, j), (k, ℓ) are disjoint, then 1{Xi=Xj}
, 1{Xk=Xℓ}

are independent, and so

E



1{Xi=Xj}
1{Xk=Xℓ}



= E



1{Xi=Xj}



E



1{Xk=Xℓ}



=
1

n2
.

There are exactly (m2)(
m−2
2) such summands.

38 comp4
5270: randomised and advanced algorithms

• else, then the two pairs (i, j), (k, ℓ) are neither disjoint nor equal,

then |{i, j, k, ℓ}| = 3. For any such summand, 1{Xi=Xj}
1{Xk=Xℓ}

is of the form 1{Xi=Xj=Xk}
, and so

E



1{Xi=Xj}
1{Xk=Xℓ}



= E



1{Xi=Xj=Xk}



=
n

∑
b=1

Pr


Xi = b,Xj = b,Xk = b


=
n

n3

=
1

n2
.

There are exactly 2 · (32)(
m
3) = 6(m3) such summands. Can you see why? (If that’s any conso-

lation, I am terrible at combinatorics.)

As a sanity check, we do have (m2) + (m2)(
m−2
2) + 6(m3) = (m2)

2
, so

we did not miss any summand in the above distinction of cases. We

can then rewrite

E



C2


=



m

2



·
1

n
+



m

2



m− 2

2



·
1

n2
+ 6



m

3



·
1

n2

=



m

2



·
1

n
+



m

2

2

·
1

n2
−


m

2



·
1

n2
(Magic?)

=



m

2



·
1

n



1− 1

n



+



m

2

2

·
1

n2

That’s really encouraging, since the second term is exactly E [C]2,

and the rst is what we were hoping to get for the variance. And,

indeed:

Var[C] = E



C2


−E [C]2 =



m

2



1

n



1− 1

n



+



m

2

2 1

n2
−


m

2



1

n

2

=



m

2



1

n



1− 1

n



,

concluding the proof.

Here, we were lucky: somehow in the variance calculation

some terms “magically cancel out” and we get the same ex-

pression as if things were independent. This is not usually the

case! But there are some ‘ways to handle things nonetheless.

For instance:

• If X1, . . . ,Xn are negatively correlated, then

Var[
n

∑
i=1

Xi] ≤
n

∑
i=1

Var[Xi]

• Since Var[X] = E


X2


−E[X]2, we can always write

Var[X] ≤ E



X2


.

Sometimes, it’s good enough!

lecture 3: balls in bins 39

There are also other “fancier” ways,
such as the Efron–Stein inequality, but
that’s slightly out of scope. Check it
out if interested!

Now we have the expectation (Eq. (21)), we have the variance

(Lemma 16.1), and we have Chebyshev. For any t > 0,

Pr[|C− c(m, n)| ≥ t] ≤ Var[C]

t2
≤ c(m, n)

t2

Let’s set m =


3
√
n


, so that (using n ≥ 2)

c(m, n) =




3
√
n


2



·
1

n
≥ 2

(it’s not immediate, but can be checked); and t := c(m, n). We then

have

Pr[C = 0] ≤ Pr[|C − c(m, n)| ≥ c(m, n)] ≤ 1

c(m, n)
≤ 1

2

showing that we have at least a 50% chance to get a collision as soon as

m ≥


3
√
n


. And conversely, using this time Markov’s inequality, This inequality, Pr[X = 0] ≥ 1−E[X]
for X integer-valued, is sometimes
referred to as the rst moment method.

Pr[C ̸= 0] = Pr[C ≥ 1] ≤ E[C] = c(m, n) ≤ m2

2n

which is less than 50% for m ≤
√

n


. To sum up, we proved, using

Chebyshev’s and Markov’s inequalities:

Theorem 17. The probability to get at least one collision when throw-

ing m independent and uniformly at random in n bins is less than 1/2

when m ≤
√

n


, and at least 1/2 as soon as m ≥
√

3n


.

conrming the empirical observations and (hopefully) gaining

some intuition along the way.

Applications

• Hashing, and hash functions

• Distribution testing (statistics)

• Lower bounds for other problems!

Coverage

Another very natural thing to ask is when each bin will have received

at least one ball. This is often referred to as the coupon collector prob-

lem, a term coined a long time ago, when computer scientists were

eating cereals for breakfast hoping to collect all of the coupons

(cards) of a collection, one cereal box at a time. We will stick with the balls-and-bins
scenario. But yes, gotta catch’em all!Obviously, since we are trying to hit at least each of n bins at

least once, we need to throw at least m ≥ n balls. But is it enough?

What is the expected number of balls M(n) one needs to throw

before each of the n bins contains at least one of the m balls?

To gure it out, we can start by trying to simulate the experi-

ment. This code is denitely not optimised!

40 comp4
5270: randomised and advanced algorithms

1 import numpy as np

2 import random

3 def coverage(n):

4 (m,ncovered) = (0,0)

5 covered = np.zeros(n)

6 while ncovered < n:

7 draw = random.randint(1, n);

8 if covered[draw-1] == 0:

9 covered[draw-1] = 1

10 ncovered += 1

11 m += 1

12 return m

1 list_n = np.arange(10, 1001);

2 experiments_avg = np.zeros(np.size(list_n));

3 experiments_std = np.zeros(np.size(list_n));

4 for i in range(len(list_n)):

5 coverages_trials = [coverage(list_n[i]) for _ in range(100)];

6 experiments_avg[i] = np.mean(coverages_trials);

7 experiments_std[i] = np.std(coverages_trials);

Figure 5: Average (over 100 trials) of
the number of balls thrown until all of
the n bins contain at least one ball, as a
function of n. The range given by one
empirical standard deviation is plotted
alongside.

Looking at the graph above, we can see how the average number

of balls to throw grows with n. But what is it, quantitatively? How

does M(n) behaves?

• Θ(n)?

• Θ(n log n)?

• Θ(n3/2)?

• Something else?

And why?

Some intuition. Let’s look at what happens when m = n: how

many bins haven’t been hit by a balls when we have thrown n of

them. The probability a xed bin does not contain any ball is



1− 1

n

n

≈ e−1

lecture 3: balls in bins 41

and so the expected number of bins with no balls, by linearity of

expectation, is

E[empty bins after n balls] =
n

∑
i=1

Pr


bin i empty
after n balls



= n ·



1− 1

n

n

≈ n

e

(22)

This means that after throwing n balls, we still have a constant

fraction (≈ 1/e) of bins to still hit. Repeating the argument, if we

throw n more balls, we expect to still have ≈ 1/e2 empty bins; n

more balls, and the remaining fraction will be ≈ 1/e3; etc. Each

time we throw n more balls, we decrease (in expectation) the num-

ber of empty bins by a constant factor, so. . . to bring the expected

number of empty bins to < 1, we’ll need to repeat that Θ(log n)

times. This argument tells us that Generalise Eq. (22) to m bins, to
compute directly

E[empty bins after m balls]

and solve for m to get this expectation
to be less than 1, say 1/2. Show you
retrieve the Θ(n log n).

M(n) = Θ(log n) · n = Θ(n log n)

sounds reasonable. Can we prove it?

Theorem 18. We have

M(n) = nHn .

where Hn = ∑
n
k=1

1
k is the n-th Harmonic number.

Before proving this, recall the following fact: Prove the rst-order term: Hn =
Θ(n log n).

Fact 18.1. The n-th Harmonic number satises

Hn = ln n+ γ+O(1) ,

where ln is the natural logarithm and γ ≈ 0.5772 is the Euler–Mascheroni

constant.

Proof of Theorem 18. To establish this result, we will introduce some

auxiliary random variables, so that we can reduce everything to the

one good tool we have – linearity of expectation. For 1 ≤ i ≤ n,

denote by Ti the number of balls needed, after hitting the (i− 1)-th

distinct bin so far, to hit a new one (the i-th bin). So for instance,

T1 = 1 (the rst ball we throw by denition hits a new bin, and we

had not hit any before), and T2 is the number of balls we need to

throw after that to get a ball in another bin than that rst one. It’s

at least 1, and, if we’re unlucky and keep throwing balls into the

very same bin, could be much more than that.

The total number of balls to throw before hitting all bins is then,

by denition,

T1 + T2 + · · ·+ Tn

and so, by linearity of expectation,

M(n) = E[T1 + T2 + · · ·+ Tn] =
n

∑
i=1

E[Ti] . (23)

It remains to get a handle on E[Ti], for i ≥ 1. We have seen that

T1 = 1 always, so E[T1] = 1; what about i ≥ 2? Given that we

42 comp4
5270: randomised and advanced algorithms

have hit i − 1 distinct bins already, the next ball we throw has a

probability
n− (i− 1)

n
=

n− i+ 1

n

to hit one of the remaining empty n − (i − 1) bins, out of n total.

We keep throwing balls, each with this probability of success, until

we do hit an empty bin: so Ti is a Geometric random variable with See previous chapter.

parameter pi :=
n−i+1

n , and so its expectation is

E[Ti] =
1

pi
=

n

n− i+ 1
.

Plugging this in (23) gives us

M(n) =
n

∑
i=1

n

n− i+ 1
=

n

∑
j=1

n

j
= nHn

concluding the proof.

Before going further, let us see how this identity we just proved

compared to our empirical average:

Figure 6: Average (over 100 trials)
of the number of balls thrown until
all of the n bins contain at least one
ball, as a function of n, along with
the theoretical value nHn shown
in Theorem 18. The range given by one
empirical standard deviation is plotted
alongside.

Not bad! That does it for the expectation. . . but the gure also

hints the variance is not too bad, and the number of balls needed to

hit all n looks quite concentrated around its expectation. To conrm

this (in view of, if we wanted to, applying Chebyshev’s inequality),

can we also compute the variance?

The amazing thing is that not only we can, it’s also quite easy.

Theorem 19. The variance of the number m(n) of bins needed to hit all n

bins satises

Var[m(n)] ≤ π2

6
n2 .

Proof. We start as in the proof of Theorem 18, writing

m(n) = T1 + · · ·+ Tn

lecture 3: balls in bins 43

The crucial observation is that (suprinsingly?), the random variables

T1, . . . , Tn are independent. Intuitively, this is because, once you have

hit i− 1 bins, the number of new balls you need to cover the remain-

ing n − (i − 1) does not depend on how many balls you already

threw: it only depends on n and i, and “doesn’t care about the

past.” This is called the memorylessness
property of the geometric distribution,
but try to rst convince yourself of this
without giving it a label.

This is great, because computing the variance becomes immedi-

ate:

Var[m(n)] = Var[T1 + · · · + Tn] =
n

∑
i=1

Var[Ti]

and we already saw that Ti ∼ Geom(pi) with pi =
n−i+1

n , “so” its

variance is Check it yourself: we don’t lose much
by ignoring the −pi term.

Var[Ti] =
1− pi
p2i

≤ 1

p2i
=

n2

(n− i+ 1)2

and we get

Var[m(n)] ≤ n2 ·
n

∑
i=1

1

(n− i+ 1)2
= n2 ·

n

∑
j=1

1

j2
≤ n2 ·

π2

6
,

the last inequality recalling that ∑∞
k=1

1
k2

= π2

6 .

We won’t go through too much here, but for instance, by Cheby-

shev’s inequality, this means that

m(n) = nHn ±O(n) (24)

with probability at least 0.99; combining this with Fact 18.1, simi-

larly,

m(n) = n ln n±O(n) (25)

with probability at least 0.99 (with a different constant in the O(·)).

To conclude this part. . . how did we do with this variance

bound? Well, let us see the empirical simulation again, adding

them to the mix:

Figure 7: Average (over 100 trials)
of the number of balls thrown until
all of the n bins contain at least one
ball, as a function of n, along with
the theoretical value nHn shown
in Theorem 18. The range given by one
empirical standard deviation is plotted
alongside, as well as the theoretical
standard deviation bound obtained.

Quite good!

44 comp4
5270: randomised and advanced algorithms

Load balancing

For the last problem considered in this chapter, let us x m = n,

and look at how “balanced” the bin contents are. In particular, we

will be interested in the maximum load of the bins: This has applications to, e.g., resource
allocations, scheduling, etc.

We throw n balls into n bins: what the (expected) number

L(n) of balls the fullest bin will contain?

Let us denote by L1, . . . , Ln the number of balls contained in each

of the n bins. We have, of course, Li ≤ n (number of balls in total)

for every i. But that’s. . . quite weak.

It is not hard to see that each bin, separately, follows a Binomial

distribution with parameters n and 1/n and so bin i will have ex- Each Li is a Bin(n, 1/n) random
variable: but L1, . . . , Ln are not inde-
pendent.

pected load

E[Li] = n ·
1

n
= 1

and we also get

Var[Li] = n ·
1

n



1− 1

n



≤ 1

This implies, By Chebyshev’s inequality, that for each 1 ≤ i ≤ n,

and setting t :=
√
2n,

Pr


Li ≥ 1+
√
2n



≤ Pr[|Li −E[Li]| ≥ t] ≤ Var[Li]

t2
≤ 1

2n

and so, by a union bound over the n bins,

Pr



max
1≤i≤n

Li ≥ 1+
√
2n



≤ n ·
1

2n
=

1

2

That “simple” application of Chebyshev shows the maximum load

L = max1≤i≤n is O(
√
n) with constant probability. But is it tight?

And what does that tell us about L(n) = E[L]?

As in the previous sections, before jumping to conclusions, let’s

run a simulation.

1 def maxload(n,m):

2 loads = np.zeros(n, dtype=int)

3 for _ in range(m):

4 draw = random.randint(1, n);

5 loads[draw-1] += 1

6 return np.max(loads)

1 list_n = np.arange(10, 1001);

2 experiments_maxload_avg = np.zeros(np.size(list_n));

3 experiments_maxload_std = np.zeros(np.size(list_n));

4 for i in range(len(list_n)):

5 maxload_trials = [maxload(list_n[i],list_n[i]) for _ in range(100)];

6 experiments_maxload_avg[i] = np.mean(maxload_trials);

7 experiments_maxload_std[i] = np.std(maxload_trials);

Looking at the graph (Fig. 8), we can see how the average maxi-

mum load grows with n. But what is it, quantitatively? How does

L(n) behaves?

lecture 3: balls in bins 45

Figure 8: Average (over 100 trials) of
the maximum load when throwing n
balls into n bins, as a function of n.
The range given by one empirical stan-
dard deviation is plotted alongside.

• Θ(log n)?

• Θ(
√
n)?

• Θ(n)?

• Something else?

And why? This one will be tough.

We will show that, oddly, the answer is “something else.” Some-

thing quite surprising:

Theorem 20. The expected maximum load L(n) when throwing uni-

formly and independently n balls into n bins grows as

L(n) = Θ



log n

log log n



.

Proof of the upper bound of Theorem 20. Fix any 1 ≤ i ≤ n, and

consider the load in bin i. For 0 ≤ ℓ ≤ n, we will give an upper

bound on the probability that at least ℓ balls fall in this bin: namely,

Pr[Li ≥ ℓ] ≤ 1

ℓℓ
(26)

To prove this: Pr[Li ≥ ℓ] is the probability that there exists a sub-

set S ⊆ [n] of size at least ℓ (a subset of our n balls), and these

|S| balls are exactly the ones which fell in the i-th bin (not a single

other): for a xed S, this has probability


1
n

 |S|

1 − 1
n

n−|S|
. We

could write exactly

Pr[Li ≥ ℓ] = ∑
S⊆[n]
|S|≥ℓ

1

n |S|



1 − 1

n

n−|S|

=
n

∑
k=ℓ

∑
S⊆[n]
|S|=k

1

nk



1 − 1

n

n−k

=
n

∑
k=ℓ



n

k



1

nk



1 − 1

n

n−k

46 comp4
5270: randomised and advanced algorithms

the last line recalling that (nk) is number of subsets of [n] of size

k, and try to bound that last expression: it is possible, but rather

annoying (as binomial coefcients often are), and we do not need

to be that precise: we just need a good enough upper bound! So we

can instead allow ourselves a bit of double-counting: let us simply

sum over all subsets S of size exactly ℓ, and focus on the probability

that all these ℓ balls fall in bin i. The other n − ℓ balls could fall

anywhere, including in bin i:8 we don’t really care, as long as the 8 That’s the “we may be double-
counting some events” part.upper bound we end up with is not too loose.
Exercise: check that

∑
n
k=ℓ

(nk)
1
nk



1− 1
n

n−k
≤ (n

ℓ
) 1
nℓ

via

a direct computation.Pr[Li ≥ ℓ] ≤ ∑
S⊆[n]
|S|=ℓ

Pr[all ℓ balls indexed by S fall in bin i]

= ∑
S⊆[n]
|S|=ℓ



1

n

ℓ

=



n

ℓ



1

nℓ
(There are (n

ℓ
) subsets of size ℓ)

From here, we will use this very convenient and useful inequality

on binomial coefcients: Another life saver.

Fact 20.1. For every 1 ≤ k ≤ n,

n

k

k
≤


n

k



≤
 en

k

k
.

This directly leads to the claimed bound

Pr[Li ≥ ℓ] ≤
 en

ℓ

ℓ 1

nℓ
=

eℓ

ℓℓ
.

By a union bound over all 1 ≤ i ≤ n, we can then conclude that, for

every ℓ ≥ 1,

Pr[L ≥ ℓ] ≤
n

∑
i=1

Pr[Li ≥ ℓ] ≤ neℓ

ℓℓ
(27)

This is a very good bound for large ℓ, but it is quite useless for

small ℓ: for instance, for ℓ = 1, it gives a vacuous bound! Of course,

another bound we have is Pr[L ≥ ℓ] ≤ 1. We will need that, too.

Let ℓ(n) be the smallest value such that This is the value of ℓ starting at
which we should switch from
using Pr[L ≥ ℓ] ≤ 1 to using

Pr[L ≥ ℓ] ≤ neℓ

ℓℓ
, as the latter be-

comes better.
ℓ(n)ℓ(n)e−ℓ(n) ≥ n . (28)

Alright: let us proceed to bounding the expectation of L. We can

write, since L is a non-negative integer-valued random variable, Dividing the summation in two parts
and using a different bound for both is
a standard, handy trick.

lecture 3: balls in bins 47

L(n) = E[L] =
∞

∑
ℓ=1

Pr[L ≥ ℓ]

=
ℓ(n)

∑
ℓ=1

Pr[L ≥ ℓ] +
∞

∑
ℓ=ℓ(n)+1

Pr[L ≥ ℓ]

≤
ℓ(n)

∑
ℓ=1

1+
∞

∑
ℓ=ℓ(n)+1

neℓ

ℓℓ
(Where the action happens)

≤ ℓ(n) +
∞

∑
ℓ=ℓ(n)+1

neℓ

ℓ(n)ℓ

= ℓ(n) +
neℓ(n)

ℓ(n)ℓ(n)

∞

∑
ℓ=ℓ(n)+1

eℓ−ℓ(n)

ℓ(n)ℓ−ℓ(n)

= ℓ(n) +
neℓ(n)

ℓ(n)ℓ(n)

∞

∑
j=1

ej

ℓ(n)j

≤ ℓ(n) +
∞

∑
j=1

1

2j
(as neℓ(n)

ℓ(n)ℓ(n)
≤ 1, and ℓ(n) ≥ 2e)

= ℓ(n) + 1 (29)

so all that remains to do to conclude is to give an upper bound on

ℓ(n) itself. This part is not too bad: by denition of ℓ(n), we know

that

(ℓ(n) − 1)ℓ(n)−1e−(ℓ(n)−1))
< n

and taking logarithms, we get (ℓ(n) − 1) log(e−1(ℓ(n) − 1)) <

log n. One can “easily” show that this implies Exercise: show it.

ℓ(n) = Θ



log n

log log n



which combined with (29) proves that L(n) = O



log n

log log n



.

What about the lower bound? We will only sketch the lower bound

in these notes, trying to focus on the key insights. The rst insight

is that L1 , . . . , Ln , which are Binomial r.v.’s with parameters n

and 1/n, are well approximated by a different, “nicer” type of

of random variable, Poisson random variables with parameter n ·

1/n = 1. So we will “assume” for convenience that we can instead More generally,

Bin



n,
λ

n



≈ Poisson(λ)

for constant λ > 0. This is very handy!

This is not an actual proof! But it can
be turned into one.

consider L′1, . . . , L
′
n ∼ Poisson(1). What’s more, we will even make

the (also not justied! But good for intuition) that these L′1, . . . , L
′
n

are independent.

We then can write, since E[L] = ∑
∞
k=1 Pr[L ≥ k], that, for any

xed ℓ ≥ 1 of our choosing,

E[L] ≥
ℓ

∑
k=1

Pr[L ≥ k] ≥ ℓPr[L ≥ ℓ] = ℓPr[∃i, Li ≥ ℓ]

≈ ℓPr


∃i, L′i ≥ ℓ


≥ ℓPr


∃i, L′i = ℓ


where the ≈ is the rst “sketchy” Poisson approximation. Using

our (unwarranted, sketchy) independence of the L′i’s, we can con-

tinue by writing If N ∼ Poisson(λ), then for every
non-negative integer k

Pr[N = k] = e−λ λ
k

k!
.

48 comp4
5270: randomised and advanced algorithms

Pr


∃i, L′i = ℓ


= 1− Pr


∀i, L′i ̸= ℓ


= 1−


1− e−1

ℓ!

n

(Independence)

≥ 1− e−
n
ℓ! (using ln(1− x) ≥ −x)

≥ 1− e
− n

ℓℓ (using ℓ! ≤ ℓℓ)

Suitably choosing

ℓ = Θ



log n

log log n



we get e
− n

ℓℓ ≤ 1/2, from which Pr


∃i, L′i = ℓ


≥ 1/2. So overall

(again, modulo the sketchy bits – this is not a full proof), we get

E[L] ≥ ℓ ·
1

2
= Ω



log n

log log n



“showing” the lower bound.

Alternative (advanced) proof of the upper bound (⋆⋆) Here is a “slick”

proof, which seems somewhat magical, but has a couple neat tricks

that you will see again or are worth internalizing. Go over it during the tutorials!

Recall that we want to bound the quantity

L(n) = E



max
1≤i≤n

Li



where the loads L1, . . . , Ln are not independent, but all follow a

Binom(n, 1/n) distribution. One can then give an upper bound

on L(n) as follows. First, introduce a free parameter t > 0 to be The idea is to replace the max by
a ∑ in order to use linearity of ex-
pectation – but maxi ≤ ∑i is too
lossy, so rst we “exponentiate” the
random variables to mitigate that
loss, as maxi exp ≤ ∑i exp should
be “exponentially less lossy.” But to
exponentiate we write X = ln expX,
which means we now have a log inside
the expectation, and that is not easy
to handle: thankfully, ln is concave,
so we can use Jensen’s inequality to
write E[ln] ≤ lnE[]. We might also
lose something in this step, but that
“Jensen gap” is typically small for nice,
well-concentrated random variables,
so. . . we can try and hope for the best.

determined later, when we want to optimise the nal bound we get.

L(n) =
1

t
·E



max
1≤i≤n

tLi



=
1

t
·E



ln emax1≤i≤n tLi


≤ 1

t
· lnE



emax1≤i≤n tLi


(Jensen’s)

=
1

t
· lnE



max
1≤i≤n

etLi


(expmaxi = maxi exp)

≤ 1

t
· lnE



∑
1≤i≤n

etLi



(maxi ≤ ∑i)

=
1

t
· ln ∑

1≤i≤n

E



etLi


(Linearity)

=
1

t
· ln nE



etL1


(30)

where the last step used the fact that L1, . . . , Ln all have the same

distribution. Now, this quantity E


etL1


is called the moment-

generating function (MGF) of the random variable L1, and as a func-

tion of t it encodes a lot of information about the distribution of

L1. Thankfully, we do not have to compute it: it is standard enough

lecture 3: balls in bins 49

that Wikipedia lists the MGFs for most probability distributions of

interest, and in particular for a Binomial random variable X with

parameters n and p we have

E



etX


= (1+ (et − 1)p)n, t ∈ R (31)

In our case, p = 1/n, so we get

E



etL1


=



1 +
et − 1

n

n

and, using this along with the standard inequality ln(1 + x) ≤ x

(x > −1) in (30), This one is a life saver.

L(n) ≤ 1

t



ln n + ln E



etL1


≤ 1

t



ln n + n ln



1 +
et − 1

n



≤ 1

t



ln n + et − 1


(32)

We’re almost there! We still have our free parameter t > 0, and

we get to choose it however we want in order to get the best upper

bound possible (we get a valid upper bound no matter which t

we pick). One option to do so would be to differentiate the RHS

of (32) to nd the minimum: this is unfortunately quite unwieldy.

A simpler (and most of the time “good enough” is to observe that If one does not care too much about
the exact constant factors or lower-
order terms.max(a, b) ≤ a + b ≤ 2 max(a, b), a, b ≥ 0 (33)

and so minimising a sum of two terms is roughly the same as minimising

the maximum. Here we have two terms: ln n and et − 1: one way to

make sure the maximum is not too bad is to “balance it out”, and

choose t so that the two terms are equal. In our case, this means Useful trick: avoids calculus.

choosing

t := ln(1 + ln n) = ln ln(en) (34)

and plugging this choice of t in (32) gives

L(n) ≤ 2 ln n

ln ln(en)
. (35)

We’re done!

Load balancing: the power of two choices

To conclude, let us mention an even more counter-intuitive result:

imagine that instead of throwing n balls uniformly into n bins, each

ball instead selects two bins uniformly at random, and falls into the

least full of the two (breaking ties arbitrarily). What becomes the This looks strange, but has appli-
cations to hashing, task allocation,
network broadcasting. . .

expected maximum load?

As usual, let us rst try to get a sense of what is going on via a

simulation:

50 comp4
5270: randomised and advanced algorithms

1 def maxload2choices(n,m):

2 loads = np.zeros(n, dtype=int)

3 for _ in range(m):

4 draw1 = random.randint(1, n);

5 draw2 = random.randint(1, n);

6 if loads[draw2-1] > loads[draw1-1]:

7 loads[draw1-1] += 1

8 else:

9 loads[draw2-1] += 1

10 return np.max(loads)

1 list_n = np.arange(10, 1001);

2 experiments_maxload2choices_avg = np.zeros(np.size(list_n));

3 experiments_maxload2choices_std = np.zeros(np.size(list_n));

4 for i in range(len(list_n)):

5 maxload2choices_trials = [maxload2choices(list_n[i],list_n[i]) for _

in range(100)];

6 experiments_maxload2choices_avg[i] = np.mean(maxload2choices_trials);

7 experiments_maxload2choices_std[i] = np.std(maxload2choices_trials);

Figure 9: Average (over 100 trials) of
the maximum load when throwing
n balls into n bins, using the “best of
two bins” strategy for each bin, as a
function of n. The range given by one
empirical standard deviation is plotted
alongside.

Looking at the graph (Fig. 9), we can see that with this “best of

two choices” the maximum load grows much slower (as a function

of n) than in the previous setting (Fig. 8). But how much slower?

• Θ(


log n)?

• Θ


log n

(log log n)2



?

• Θ(log log n)?

• Something else?
TODO in class: Visualization of the
maximum load as m increases, i.e.,
as more balls are thrown (same with
power of two choices).

Amazingly, this simple “power of two choices” brings the expected

maximum load from Θ


log n
log log n



to something exponentially smaller:

Theorem 21. The expected maximum load L̂(n) when throwing indepen-

dently n balls into n bins using the “best of two choices” strategy above

grows as

L̂(n) = log log n+O(1) .

(We will not prove this theorem in the lecture.)

