
Lecture 2: Concentration Bounds, and Tricks

Markov goes to Las Vegas

Remember from last lecture that we saw two types of randomised

algorithms: Las Vegas and Monte Carlo. There are more, of course: e.g., Bellagio
algorithms. And others! Mathe-
maticians and computer scientists
clearly love gambling – look up Jacob
Bernoulli when you have a chance.

Las Vegas algorithms: the algorithm is always correct, but the running

time is only bounded in expectation.

Monte-Carlo algorithms: the algorithm is only correct with high probabil-

ity, but the running time is bounded with probability one.

Wouldn’t it be nice if there was a way to go from one to the other?

Well, as it turns out, there is:

Lemma 4.2. Suppose there exists a Las Vegas algorithm A for some task,

with expected running time T. Then there exists a Monte Carlo algorithm

A ′ for the same task with worst-case running time O(T) and probability

of failure 1/100.

Proof. The proof is quite simple, and relies on analyzing the follow-

ing:

Algorithm 2: Algorithm A′.
Require: input x

1: Run A on x for at most 100T steps

2: if A terminated within 100T steps then

3: return A’s output ▷ Always correct

4: else

5: return an arbitrary output ▷ Very likely wrong

It should be quite clear that the above algorithm always runs

in time at most 100T +O(1) = O(T); and also that whenever we

reach Line 3, the output of A′ must be correct (because A, once it

terminates, is always correct).

When we reach Line 5 because A “timed out,” however, we

cannot really say anything: maybe what we output is correct, but

it’s most likely wrong. So we’ll just assume it’s an incorrect output,

and all we need to do to prove the lemma is to prove that A “times

out” with probability at most 1/100.

Importantly, all we can use to do so is what we know about A,

which is very little: we only know its expected running time is at

most T, and that running times are non-negative. That’s not a lot to

build on, but that’s just enough for Markov’s inequality:

22 comp4
5270: randomised and advanced algorithms

Theorem 5 (Markov’s inequality). Let X be a non-negative random The “non-negative” assumption
is crucial. It is denitely not true
without!

variable with E [X] < ∞. For any t > 0, we have

Pr[X ≥ t] ≤ E [X]

t

Applying this with X being the running time of A and t = 100

proves the lemma.

Lecture cue: prove Markov’s.

Markov and beyond: Randomised Median

As mentioned in the previous lecture, there exists a very neat,

highly non-trivial (deterministic) divide-and-conquer algorithm

to nd the median of (an array of) n numbers in linear time. You

have seen it in previous So we will not analyze it again: instead,

we will give a simple (Monte Carlo) randomized algorithm, also

linear-time.

The idea of the algorithm is relatively simple, yet surprisingly

powerful: given as input an array A of n integers, subsample at For simplicity, we will throughout
assume n is odd, and that all num-
bers are distinct. Neither of these
assumptions is necessary.

random a smaller array B of m ≪ n integers from A, and use B as

some sort of “guide” for what is in A. In particular, we expect, if we

are not too unlucky, that nding “approximate medians” of B will

give us an approximate idea of what the median of A is, and we

can then lter out a lot of the elements of A to end up with a much

more manageable task. And we can easily nd that in B, since it

will have much smaller size!

Here is the actual algorithm, only missing the value of m (to be

determined shortly):

Algorithm 3: Randomised Median in
Worst-Case Linear Time.Require: array A of n distinct integers

1: Set ∆ = 4
√
m ▷ Why? We’ll see later. “Chebyshev.”

2: Create an array B containing m elements of A chosen indepen-

dently and uniformly at random (with replacement)

3: Sort B ▷ Time O(m logm)

4: Let b and b be the (m/2− ∆)-th and (m/2+ ∆)-th elements of B

▷ “Approximate medians” of B

5: ▷ Now we use b and b as “guides” for the contents of A. All 3

steps below take time O(n).

6: Copy every x of A with b ≤ x ≤ b in a new array C

7: Compute the number k of elements of A smaller than b

8: Compute the number ℓ of elements of A larger than b

9: if k > n
2 or ℓ > n

2 then

10: return fail ▷ The median of A cannot be in C

11: else if |C| > 4n∆
m + 2 then

12: return fail ▷ We cannot process C fast enough!

13: else

14: Sort C ▷ Time O


n√
m
log n√

m



15: return the (n+1
2 − k)-th element of C.

lecture 2: concentration bounds, and tricks 23

First, let’s look at the time complexity. Assuming for now that

m = O(n/ log n) and 4n∆
m = O(n/ log n) (they will be!), the total

time is dominated by Lines 6 to 8, and so the algorithm runs in

(worst-case) time O(n). Good.

Second, let’s look at the correctness. Suppose the algorithm

reaches Line 15: then it not hard to see that the element returned is

at position k + n+1
2 − k = n+1

2 in A: that is, it indeed returns the

median.

So the algorithm always runs in time O(n), and when it does not

output fail it correctly outputs the median of A. This only leaves us

with the third point: what is the probability the algorithm returns fail?

This can only happen because of three things (“bad events”):

Event E1: Too many elements are smaller than b: k >
n
2

Event E2: Too many elements are larger than b: ℓ >
n
2

Event E3: C is too large: |C | > 4n∆
m + 2 Why is that an issue, again?

We want to get an upper bound on the probability at least one of

these three events occurs. We could try to argue these events are

independent (maybe?) and try to bound Pr[E1 ∪ E2 ∪ E3] = 1 −
Pr



E1 ∩ E2 ∩ E3



, and maybe (?) get some reasonable bound as

a result. But independence is tricky to reason about, and nobody

wants to do that if they do not have to. So instead, we will use the

union bound: The union bound sounds basic, but it
is truly a fundamental, powerful tool.

Lemma 5.1 (Union Bound). Let E1 , . . . , Ek , . . . be a (possibly count-

ably innite) family of (possibly dependent) events. Then

Pr



∞


k=1

Ek



≤
∞

∑
k=1

Pr[Ek] .

This is great! No need to worry about independence: now we

immediately have by the union bound that

Pr[E1 ∪ E2 ∪ E3] ≤ Pr[E1] + Pr[E2] + Pr[E3] . (6)

By symmetry, one can also convince themselves that Pr[E1] =

Pr[E2], so we only have two things to analyze.

Bounding Pr[E1]. What is the probability that k, the number of

elements of A smaller than b, exceeds n
2 ? By denition, if it exceeds

n
2 , then b is larger than (or equal to) the median of A. But b is the

(m2 − ∆)-th element of B, which means that among the m elements

we picked uniformly at random (with replacement) to create B, at

most m
2 − ∆ were smaller than the median.

Which should be unlikely: when we pick one element uniformly

at random from A, the probability to get an element smaller than

the median is exactly n−1
2 · 1

n = 1
2 − 1

2n . So “by linearity of expec-

tation” the expected number of elements smaller than the median is
m
2 − m

2n . But
m
2 − ∆, that’s much smaller than that! Can we quantify

this?

24 comp4
5270: randomised and advanced algorithms

Thankfully yes. Let’s call “the expected number of elements

smaller than the median” X. Then we can write X = ∑
m
i=1 Xi ,

where Xi ∈ {0, 1} is the indicator random variable for “the i-

th element sampled to go into B was smaller than the median of

A.” That is, all Xis are i.i.d., and Bernoulli random variables with

parameter p := 1
2 − 1

2n , and so from what we saw about Binomials This means X is a Binomial random
variables with parameters m and p:
X ∼ Bin(m, p).last week we get that Var[X] = mp(1− p) = m

4



1− 1
n2



<
m
4 .

Why are we interested in the variance? Good question! We

want to argue that most of the time X is “not too far from its ex-

pectation” m
2



1− 1
n



, and in particular that getting as low as

m
2 − ∆ = m

2



1− 2√
m



is truly a freak event. Unfortunately, using Do it: try and apply Markov’s inequal-
ity to X. Why doesn’t it work? Then
try to apply it to m − X: why is the
result too weak?

Markov’s inequality here will not be enough. . . we need something

stronger.

And that’s where Chebyshev’s inequality comes into play: instead

of just using the expectation, Chebyshev allows you to leverage

additional information you may have about the random variable,

specically its variance, to (usually) get stronger bounds:

Theorem 6 (Chebyshev’s inequality). Let X be a random variable with

E


X2


< ∞. For any t > 0, we have

Pr[|X −E [X]| ≥ t] ≤ Var[X]

t2

Another way to look at it: this is saying that a random variable

usually may uctuate around its expectation by give or take a few

standard deviations (i.e., a few
√
Var). . . but more? That’s unlikely. By the way, this is why we set ∆ =

4
√
m: the standard deviation of X we

computed about is ≈ √
m/2, so that’s

the right order of magnitude.

Compared to Markov’s inequality, Chebyshev’s:

• Provides two-sided bounds (bounds the probability to deviate

too far below and too far above the expectation) ✓

• Gives a bound that decays quadratically (∝ 1/t2) instead of

linearly (∝ 1/t), so is better for t ≥ 1 (Fig. 2) ✓

• Does not require the random variable to be non-negative ✓

• Requires knowing a bound on the variance (if it exists) ×

So we want to use Chebyshev’s inequality to argue Pr


X ≤ m
2 − ∆



is small. Here we go: rewriting m
2 − ∆ = E[X]−



∆− m
2n



and using

lecture 2: concentration bounds, and tricks 25

Figure 2: An illustration of the tail
bounds Pr[X ≥ t] (as a function of t ≥
0) given by Markov and Chebyshev’s
inequalities, for the specic case of a
non-negative random variable X ≥ 0
with both expectation and variance
equal to 1: E[X] = Var[X] = 1. Note
that Chebyshev does not require that
X ≥ 0, this is simply here for the
sake of comparison with Markov’s
inequality, which does.

m ≤ n (so ∆− m
2n ≥ ∆− 1

2 ≥ ∆
2 = 2

√
m), we have

Pr


X ≤ m

2
− ∆



= Pr


X ≤ E[X]−


∆− m

2n

 

≤ Pr


|X −E[X]| ≥


∆− m

2n

 

≤ Var[X]


∆− m
2n

2
(by Chebyshev)

≤ m

4(∆/2)2
(Bound on variance)

=
1

16
(Setting of ∆)

This gives us

Pr[E1], Pr[E2] ≤
1

16
, (7)

using Chebyshev’s inequality. We only have to bound Pr[E3] to

conclude.

Bounding Pr[E3]. This is the last piece:4 we want to bound the 4 For now at last: there will be more
down the line.probability that C is “too large,” that is the probability |C| exceeds

4m. Since all we have seen so far relies either on computing the

expectation of the quantity of interest, its variance, or both, it would

seem reasonable to start with computing E[|C|] and maybe use

Markov’s inequality: unfortunately, the quantity E[|C|] is quite

tricky to compute.

Instead, we will take an alternative path: let Rb denote the rank

of b in A (and similarly Rb for b). We have already proven that

Pr


Rb >
n

2



, Pr


Rb <
n

2



≤ 1

16

(this is Eq. (7)). Now, we want to prove that |C| = Rb − Rb + 2 ≤
4n∆
m + 2 with high probability: so it’d sufce to show that

Pr



Rb <
n

2
− 2

n∆

m



, Pr



Rb >
n

2
+ 2

n∆

m



≤ 1

32

as this would imply the result. One may ask: why these particular

values? The reason is that since b is dened as the (m2 − ∆)-th ele-

ment in B, if the uniform random sampling was “representative”

26 comp4
5270: randomised and advanced algorithms

enough we expect to have an 1
2 − ∆

m fraction of the original array

A on its left: so having much less than that, say a fraction 1
2 − 2 ∆

m ,

“should” be unlikely.

As before, we will only focus on bounding Pr


Rb <
n
2 − 2 n∆

m



,

as the case of Rb is similar (by symmetry).

To proceed, let’s consider the set S of the s := n
2 − 2 n∆

m smallest

elements of A – let’s call them “tail elements”. The key observation

is that if fewer than m
2 − ∆ elements of S end up in B, then b, being

the (m2 − ∆)-th element of B, is not a tail element: and so must have

Rb ≥ s. Based on that, we want to show that the probability to have

at least m
2 − ∆ of S in B is small.

Now this looks familiar: the probability to pick an element of

S when choosing one from A uniform at random is s
n = 1

2 − 2∆
m .

The number of elements from S in B (call it Y) is then a Binomial

random variable with parameters m and s
n . We have E[Y] = ms

n =
m
2 − 2∆, Var[Y] = ms

n



1− s
n



≤ ms
n ≤ m

2 ; and we want to bound

Pr


Y ≥ m

2
− ∆



= Pr[Y ≥ E[Y] + ∆]

≤ Pr[|Y−E[Y]| ≥ ∆]

≤ Var[Y]

∆2
(Chebyshev)

=
m

2 · 16m
(as ∆ = 4

√
m)

=
1

32

To summarize, we’ve just shown that

Pr



Rb <
n

2
− 2

n∆

m



≤ Pr


Y ≥ m

2
− ∆



≤ 1

32

We can similarly get Pr


Rb >
n
2 + 2 n∆

m



≤ 1
32 , and so, “by a union Do it! That’s good practice.

bound,”

Pr[E3] = Pr



|C| >
4n∆

m
+ 2



≤ Pr



Rb <
n

2
− 2

n∆

m



+ Pr



Rb >
n

2
+ 2

n∆

m



≤ 1

16
. (8)

Putting it together. The probability that the algorithm fails is

bounded, from Eq. (6), by

Pr[E1 ∪ E2 ∪ E3] ≤ Pr[E1] +Pr[E2] +Pr[E3] ≤
1

16
+

1

16
+

1

16
=

3

16
.

When it doesn’t fail, we have seen that it is correct; and it always

runs in time at most O(n). So. . . we’re done! Almost. We haven’t

chosen the value of m yet!

So what do we need? For our running time, we need both

O(m logm) and O(n∆m log n∆
m) = O(n√

m
log n√

m
) to be O(n). There

lecture 2: concentration bounds, and tricks 27

are many ways to do so, but one aesthetically pleasing choice is to

make both equal:

m =
n√
m

which leads to setting m = n2/3 . To conclude:

Theorem 7. Randomised Median (Algorithm 3) is a linear-time Monte

Carlo algorithm with failure probability at most 3/16.

But can we bring down this failure probability?

This is all very good, but, when you think about it, a failure prob-

ability of 3/16 ≈ 19% might be too much for many applica-

tions. Can we somehow bring this down to 1%? 0.01%? δ, for

any δ ∈ (0, 1] of our choosing?

The obvious natural approach would be to go back to our anal-

ysis, see what the bottlenecks were, and modify the parameters to

achieve smaller error probability. This would work here, but it may (⋆⋆) Go through the argument and
see what happens to the probability of
failure when you choose a larger ∆, for
instance m3/4 or

√
n.

not always work, and honestly it is also very inconvenient. We went

through a lot of trouble to establish Theorem 7, it would be nice not

to have to start all over again!

Fortunately, it is possible: there is a way to take our algorithm

(and the guarantees we proved for it), and amplify its success prob-

ability in a blackbox way. Of course, there is a cost: we will need to

run the algorithm several times – the price is more computation

time, and more random bits. Random bits are not always cheap:
they are a resource, like time, and
memory.

Here is the idea: given the input array A run the algorithm (Al-

gorithm 3) T times on A, using fresh (independent) random bits

each time. If at any point the algorithm does not return fail, then

return the median it outputs. If this never happens, return fail.

Since we have a Monte Carlo algorithm, whenever we return

something else than fail this is guaranteed to be correct, and we

have the median. So what is the probability to output fail now?

Well, we need all T independent runs to fail. And they are all inde-

pendent, so the probability that they all fail is at most



3

16

T

Solving for this to be less than δ, we get that taking

T =



log(1/δ)

log 16
3



= O(log(1/δ))

sufces. This gives the following:

Corollary 7.1. For any δ ∈ (0, 1], the Repeated Randomised Median

described above is a Monte Carlo algorithm with failure probability at

most δ and worst-case time complexity O(n log(1/δ)).

This simple “trick” is your rst example of probability amplication.

28 comp4
5270: randomised and advanced algorithms

Viva Las Vegas!

In light of Corollary 7.1, it is natural to wonder: why stopping

there? Can we convert any Monte Carlo algorithm into a Las Vegas

algorithm, providing a converse to Lemma 4.2?

The answer is not always (not for every Monte Carlo algorithm),

but in this particular case yes. The key observation is that Algo-

rithm 3 is not any Monte Carlo algorithm: it never “fail silently.”

That is, when the Algorithm 3 fails, it tells us so! This is a very

valuable feature.

Consider the following algorithm:

Algorithm 4: Randomised Median in
Expected Linear Time.Require: array A of n distinct integers

1: repeat

2: Run Algorithm 3 on A (with fresh random bits)

3: Let y be the output

4: until y ̸= fail

5: return y

Correctness is immediate: whenever this new algorithm stops,

the y it outputs is the median of A. But does it ever stop? And if so,

what is its expected running time?

Let τ(n) = O(n) be the (worst-case) running time of Algo-

rithm 3, and K be the (random) number of loop iterations before Al-

gorithm 4 terminates. Clearly, the (random) running time of Algo-

rithm 4 is (at most) K · τ(n). What can we say about K? Some vocabulary: K as dened here
is a geometric random variable with
parameter p ≥ 13/16.1. The probability that K ≥ 1 is 1: we always run the loop at least

once.

2. The probability that K ≥ 2 is at most 3/16: to go to the sec-

ond iteration of the loop, the rst call to Algorithm 3 must have

failed.

3. The probability that K ≥ 3 is at most (3/16)2: to go to the third

iteration of the loop, the rst two calls to Algorithm 3 must have

failed (and they are independent).

4. The probability that K ≥ k is at most (3/16)k−1: to go to the k-th

iteration of the loop, the rst k− 1 calls to Algorithm 3 must have

failed (and they are independent).

This is particularly useful, since from what we say in the rst chap-

ter we can write

E[K] =
∞

∑
k=1

Pr[K ≥ k]

and here this becomes

E[K] ≤
∞

∑
k=1



3

16

k−1

=
16

13
≤ 1.231

This means that the expected running time of our Las Vegas algo-

rithm, Algorithm 4, is at most 1.231 · τ(n) = O(n)!

lecture 2: concentration bounds, and tricks 29

Corollary 7.2. For any δ ∈ (0, 1], the Indenitely Repeated Randomised

Median (Algorithm 4) is a Las Vegas algorithm with expected time com-

plexity O(n).

More generally, we can prove the following:

Theorem 8. Let A be a Monte Carlo algorithm with worst-case running

time T(n) and constant failure probability p ∈ (0, 1), with the following

extra guarantee: one can detect whether the output of A is incorrect in

time O(1). Then there exists a Las Vegas algorithm A ′ for the same task

with expected running time O(T(n)) (where the hidden constant in the

O(·) depends on p).

Proof. Your turn!

And to conclude, something totally different!

Probability amplication by Majority
VoteThe Randomised Median algorithm we saw (Algorithm 3) was

quite nice, as far as Monte Carlo algorithms go: whenever it failed,

it told us so. But that’s usually not the case. Consider for instance

the following scenario: someone implemented a very useful thing,

say a data structure with its API, and gives you access. You cannot

see the code or the implementation to check it’s correct: all you

can do is query that data structure D, and on input element x this

query Q to D is supposed to output

Q(x) =







yes if x ∈ D

no if x /∈ D

Unfortunately, the implementation is not correct, or something is

wrong: for whatever reason, each query behaves somewhat ran-

domly, and is only correct with probability 60%. And when it’s This sounds ridiculous? Wait until you
hear about hashing and Bloom lters
later in the course.

wrong, of course, you don’t know it!

Can we use this data structure access in a blackbox way to

obtain better guarantees, and have queries that are correct with

probability 99% instead? Probability 1 − δ?

The answer is, again, yes. And the probability amplication

technique to use here is very intuitive: a simple majority vote. Here’s

what we will do, where T = T(δ) is an integer to be determined

shortly:

Algorithm 5: More reliable data
structure via majority vote.Require: blackbox access to D via Q; input x

1: for t = 1, 2, . . . , T do

2: yt ← Q(x) ∈ {yes, no}

3: return majority(y1 , . . . , yT) ▷ yes if at least half of the yt’s are

yes

Let us analyze this. For any xed x, we know that each yt ∈
{0, 1} is the correct answer with probability at least 6/10, and are

30 comp4
5270: randomised and advanced algorithms

independent (we assume that the random errors are independent,

at least). So if we dene

Y =
T

∑
t=1

1{yt is correct}

we have a sum of independent Bernoulli random variables. And It’s even a Binomial r.v. with parame-
ters T and p ≥ 6/10, but we will not
need to be that precise.

since we take a majority vote, the only way for our output to be

incorrect is to have more than half of the T answers being incorrect,

that is, to have Y <
1
2T.

But E[Y] ≥ 6
10T, so to be wrong we need Y to be more than

1
10T away from its expectation. This should ring a bell: we can use

Chebyshev’s inequality for that!

We could, but that will not be good enough (that won’t give a

good enough bound). We can do better! Enters the Chernoff bound: Try it: Chebyshev should get you

something like Pr


Y <
1
2T



≤ 24
T .

Theorem 9 (Chernoff bound). Let X1, . . . ,Xn be independent random

variables taking value in [0, 1], and let P := ∑
n
i=1 E [Xi] For any γ ∈

(0, 1] we have

Pr



n

∑
i=1

Xi > (1+ γ)P



< exp(−γ2P/3) (9)

Pr



n

∑
i=1

Xi < (1− γ)P



< exp(−γ2P/2) (10)

We can apply it with “n = T, P = 6
10T, and γ = 1

6” (the last one

to have (1− γ) · 6
10T = 1

2T), and that immediately gives us

Pr



Y <
1

2
T



≤ e−
1

120 T

which decays exponentially with T. In particular, for large T this is Sure, the constant 1/120 in there is
not great, but we could do better by
sweating a bit more.

much, much better than what Chebyshev would give: In any case:

Figure 3: Bounds on Pr


Y <
1
2T



pro-

vided by Chebyshev’s and Chernoff’s
inequalities, as a function of T.

we wanted a failure probability less than δ? Then is sufces to solve

for (integer) T:

e−
1

120 T ≤ δ

lecture 2: concentration bounds, and tricks 31

giving T ≥ ⌈120 ln(1/δ)⌉. So with taking T(δ) = O(log(1/δ))

in Algorithm 5 sufces to amplify the success probability of each

query on x from 60% to 1− δ, at the (small?) cost of O(log(1/δ))

more queries to the data structure D.

We have used Markov’s and Chebyshev’s inequalities and

the Chernoff bound, and this allowed us to analyse and am-

plify the success probability of our randomised algorithms. In

the next lectures, we will see a related technique, also based on

the Chernoff (or, looking ahead, Hoeffding) bound: a generali-

sation of the “majority vote” trick for when the output can take

more than only 2 values, called the median trick.

Concentration inequalities: a summary

We summarize the “concentration bounds” used in the chapter They are called that way because they
quantify how “concentrated” (in terms
of probability) a random variable is
around its expectation.

so far, along with some others (more advanced) that will come in

handy in the next chapters. These will be sufcient in many or

most settings. There are, of course, many others, and many rene-

ments or variants of the bounds we present here. If you are inter-

ested, see e.g., Chapter 2 of 5 or 6 for a much more comprehensive 5 Roman Vershynin. High-dimensional
probability, volume 47 of Cambridge
Series in Statistical and Probabilistic
Mathematics. Cambridge University
Press, Cambridge, 2018
6 Stéphane Boucheron, Gábor Lugosi,
and Pascal Massart. Concentration
inequalities. Oxford University Press,
Oxford, 2013. A nonasymptotic theory
of independence

and insightful coverage.

We start with the mother of all concentration inequalities, Markov’s

inequality:

Theorem 10 (Markov’s inequality). Let X be a non-negative random

variable with E [X] < ∞. For any t > 0, we have

Pr[X ≥ t] ≤ E [X]

t

Applying this to (X −E [X])2, we get

Theorem 11 (Chebyshev’s inequality). Let X be a random variable

with E


X2


< ∞. For any t > 0, we have

Pr[|X −E [X]| ≥ t] ≤ Var[X]

t2

By applying Markov’s inequality to the moment-generating

function (MGF) of ∑n
i=1 Xi in various ways, one can also obtain the

following statements:

Theorem 12 (Hoeffding bound). Let X1, . . . ,Xn be independent ran-

dom variables, where Xi takes values in [ai, bi]. For any t ≥ 0, we have

Pr



n

∑
i=1

Xi >

n

∑
i=1

E [Xi] + t



≤ exp(− 2t2

∑
n
i=1(bi − ai)2

) (11)

Pr



n

∑
i=1

Xi <

n

∑
i=1

E [Xi]− t



≤ exp(− 2t2

∑
n
i=1(bi − ai)2

) (12)

32 comp4
5270: randomised and advanced algorithms

Corollary 12.1 (Hoeffding bound). Let X1, . . . ,Xn be i.i.d. random

variables taking value in [0, 1], with mean µ. For any γ ∈ (0, 1] we have

Pr











1

n

n

∑
i=1

Xi − µ











> γ



≤ 2 exp(−2γ2n) (13)

Theorem 13 (Chernoff bound). Let X1, . . . ,Xn be independent random

variables taking value in [0, 1], and let P := ∑
n
i=1 E [Xi] For any γ ∈

(0, 1] we have

Pr



n

∑
i=1

Xi > (1+ γ)P



< exp(−γ2P/3) (14)

Pr



n

∑
i=1

Xi < (1− γ)P



< exp(−γ2P/2) (15)

In particular, if X1, . . . ,Xn are i.i.d. with mean µ, then for any γ ∈ (0, 1]

we have

Pr











1

n

n

∑
i=1

Xi − µ











> γµ



≤ 2 exp(−γ2nµ/3) (16)

As a rule of thumb, the “multiplicative” (Chernoff) from Theo-

rem 13 is preferable to the “additive” bound (Hoeffding) from Corol-

lary 12.1 whenever µ := P/n ≪ 1. In case one only has an upper or

lower bound on the quantity P = ∑
n
i=1 E [Xi], the following version

of the Chernoff bound can come in handy:

Theorem 14 (Chernoff bound (upper and lower bound version)).

In the setting of Theorem 13, suppose that PL ≤ P ≤ PH . Then for any

γ ∈ (0, 1], we have

Pr



n

∑
i=1

Xi > (1+ γ)PH



< exp(−γ2PH/3) (17)

Pr



n

∑
i=1

Xi < (1− γ)PL



< exp(−γ2PL/2) (18)

