
Lecture 12: Learning from Experts

We consider the following setting: there are T time steps, and n T might even be innite.

“experts” A1, . . . , An: at each time step t, the algorithm A

• receives advice v1,t, . . . , vn,t ∈ 0, 1 from the experts, where vi,t
comes from Ai;

• outputs a prediction ut ∈ 0, 1;

• after the prediction is made, gets the ground truth ut ∈ 0, 1,
and pays cost

ct := 1ut ̸=ut

There is no assumption on the true values: they could be correlated,
independent, adversarial. There is no assumption on the experts
either: they could collude, be randomised, be adversarial, be omni-
scient. And there is no constraint on the algorithm itself: it can use
as much memory as needed, be computationally inefcient, etc. But
it cannot see the future: all the information it has, at each time step
t, is what happened in previous time steps, along with the current
advice v1,t, . . . , vn,t from the experts.

How to minimise the total cost C(T) = ∑T
t=1 ct?

First, what does it even mean to minimise the total cost? How
to formulate what this means? Can we get total cost, say, C(T) =

o(T)? C(T) = O(log T)?

Some bad news.

Fact 56.1. For any deterministic algorithm A, and for any set of n experts,
there is a sequence u1, . . . , uT such that A must have cost C(T) = T.

Proof. ut is fully determined by the past, and the advice received:
set ut = 1− ut.

Of course, it is for deterministic algorithms, these weaklings.
Unfortunately, randomised algorithms do not do much better:

Fact 56.2. For any algorithm A, and for any set of n experts, there is a
distribution over sequences u1, . . . , uT such that A must have expected
cost E[C(T)] ≥ T

2 .

Proof. Uniformly random sequence.

136 comp45270: randomised and advanced algorithms

Changing the goal. In view of this seriously underwhelming state
of affairs, we need to reconsider either the setting, or the objective.
We will do the second: in particular, one observation is that while
in these bad examples the algorithm A does very poorly, so do all the
n experts. This suggests that the right thing to try to achieve is not a
small absolute error, but an small error compared to that of the best
expert in hindsight. Namely, after T steps, let

C∗(T) = min
1≤i≤n

T

∑
t=1

1vi,t ̸=ut

denote the minimum cost achieved by the best of the n experts.

How to minimise the cost C(T) compared to C∗(T)?

Still some bad news. Even then, we cannot do arbitrarily close to
C∗(T), at least not with a deterministic algorithm: a multiplicative
factor at least 2 is necessary.

Fact 56.3. For any deterministic algorithm A, and for any set of n experts,
there is a sequence u1, . . . , uT such that A must have regret C(T) = T,
but C∗(T) ≤ T

2 .

Proof. In the tutorial.

Warmup: one perfect expert But there is some good news, too! Imag-
ine one of the n experts makes no mistakes. Of course, we do not
know which one in advance: yet, we can leverage this.

Consistent Expert
Theorem 57. There is a (deterministic) algorithm (Algorithm 22) such
that, if one of the n experts makes zero mistakes, i.e., C∗(T) = 0, then

C(T) ≤ n− 1 .

Moreover, this holds even when T = .

Algorithm 22: Consistent Expert
algorithm1: Set S ← [n]

2: for all 1 ≤ t ≤ T do
3: Receive v1,t, . . . , vn,t
4: if S ≥ 1 then
5: Pick any i ∈ S ▷ Lexicographically, for instance
6: Choose ut ← vi,t
7: else
8: Choose ut ← 0 ▷ Arbitrary

9: Receive ut ▷ Observe the truth
10: S ← S \ i ∈ S : vi,t ̸= ut ▷ Remove all mistaken experts

Proof. The proof uses what is known as a potential argument, where
we dene a suitable quantity Φ such that (1) initially, Φ ≤ Φ0, (2) at Potential argument

lecture 12: learning from experts 137

the end, Φ ≥ Φ, and (3) every time a “bad event” happens, Φ
decreases by a quantiable amount (typically, either decreases by at
least some quantity > 0 or by a constant factor > 1). By putting
all 3 together, we are able to argue that the number of “bad events”
is bounded by some values (which depends on Φ0,Φ, and or).

Here, our potential function Φ is simply Φ = St , where St is
the set S at the end of step 1 ≤ t ≤ T. We have, at the beginning,
Φ = Φ0 := [n] = n; and, at the end, since by assumption at least
one expert never makes any mistake and thus is never removed
from S, Φ = ST ≥ 1.

The “bad event” is when the algorithm makes a mistake: if this
happens at time t, it is because the expert chosen from S = St−1

in Step 5 was wrong, and so it will be removed from St−1: which
means St decreases by (at least) = 1: Φt ≤ Φt−1 − .

Putting it all together, if we make C mistakes then our potential
Φ decreases by at least · C:

1 ≤ Φ ≤ Φ0 − · C = n − 1 · C

and so C ≤ n − 1.

However, we can do even better! The main insight in the previ-
ous algorithm was that, every time we made a mistake, we could
remove at least one expert from the pool S. What if we could re-
move at least a constant fraction of them?

Halving Algorithm
Theorem 58. There is a (deterministic) algorithm (Algorithm 23) such
that, if one of the n experts makes zero mistakes, i.e., C∗(T) = 0, then

C(T) ≤ log2 n .

Moreover, this holds even when T = .

(As a side note: there is “no free lunch.” If we create 2T fake ex-
perts, one for each possible sequence u1 , . . . , uT , then of course one
of them will make no mistake: but then, the RHS in the theorem
above becomes T.)

Algorithm 23: Halving algorithm
Set S ← [n]
for all 1 ≤ t ≤ T do

Receive v1,t , . . . , vn,t
if S ≥ 1 then

Choose ut ← maji∈S vi,t ▷ Take the majority advice
else

Choose ut ← 0 ▷ Arbitrary

Receive ut ▷ Observe the truth
S ← S \ i ∈ S : vi,t ̸= ut ▷ Remove all mistaken experts

Proof. Again, we will use a potential function argument, taking
Φ = St as our potential. As before, Φ0 = n, while Φ = ST ≥
1; the main difference is that, each time we make a mistake, we

138 comp45270: randomised and advanced algorithms

know that this is before at least half of the current experts in St

were wrong (as we took a majority vote among them), and so every
time we make a mistake (“bad event”) Step 9 will remove at least a
 = 1/2 fraction of Φ.50 50 The algorithm might also decrease

S in Step 9, and so Φ, when we do
not make a mistake: but we cannot
prove anything about this, when or if
it happens, and by how much.

As a result, if we make C mistakes then our potential Φ de-
creases by at least (1−)C:

1 ≤ Φ ≤ Φ0 · (1−)C =
n
2C

and so C ≤ log2 n.

The theorem above is very good if at least one of the n experts
is perfect. Unfortunately, this is very seldom the case: what can we
say when all experts make some mistake, sometimes? Can we do
anything?

Making this robust. Here is an alternative view of the Halving
algorithm:

• We start with n weights, w1 = · · · = wn = 1.

• We answer according to the weighted majority

maj1≤i≤n wivi,t

• If an expert i is wrong at some step t, then their weight is set to
0: wi ← 0 · wi.

This may sound a little extreme: “one strike and you’re out.” In-
stead of setting a weight to zero when a mistake is made, we could,
instead, decrease it.

Algorithm 24: (Basic) Multiplicative
Weights Updates algorithm1: Set w1, . . . ,wn ← 1

2: for all 1 ≤ t ≤ T do
3: Receive v1,t, . . . , vn,t
4: Choose ut ← sign

∑n

i=1 wivi,t ≥ 1
2 ∑

n
i=1 wi

▷ Weighted

majority
5: Receive ut ▷ Observe the truth
6: for all 1 ≤ i ≤ n do ▷ Penalise all mistaken experts

7: wi ←

1
2wi if vi,t ̸= ut
wi otherwise.

Basic MWU Algorithm

Theorem 59. There is a (deterministic) algorithm (Algorithm 24) such
that

C(T) ≤ C∗(T) + log2 n
log2

4
3

≤ 2.41(C∗(T) + log2 n) .

Moreover, this holds even when T = .

Proof. Again (again), we will use a potential function argument, but
this time dening our potential function Φ as

Φ = Wt

lecture 12: learning from experts 139

where Wt = ∑n
i=1 wi,t (introducing new notation to get the de-

pendence on t) is the sum of the weights of the n experts at the
beginning of time t.

We get Φ0 = n, but now we can no longer bound Φ by 1;
however, we know that, by denition, there will be at least one
expert who makes only C∗ mistakes in total. That expert will be
penalised and see its weight scaled by 1/2 C∗ times, and so at the
end will still have weight 1/2C

∗
. But the total weight at the end is

at least the weight of that one expert, and so

Φ ≥ 1
2C∗ .

Moreover, since we are taking a (weighted) majority we know, as
in the proof of Theorem 58, that each time we make a mistake at
least half of the total weight of the experts was on wrong experts,
and so every time we make a mistake (“bad event”) Step 7 will
remove at least a 1/2 fraction of the “wrong experts” weight: call
this Wwrong

t . But our potential function is the total weight, so what
decrease does that imply for Wt?

Writing

Wt = Wwrong
t

weight on experts wrong
at time t

+ (Wt −Wwrong
t)

weight on experts correct
at time t

we get that, if a mistake is made by the algorithm at time t, then

Wt+1 =
1
2
·Wwrong

t + (Wt −Wwrong
t)

= Wt −
1
2
Wwrong

t

≤ Wt −
1
2
· 1
2
Wt (The majority was wrong: Wwrong

t ≥ 1
2Wt)

=
3
4
Wt

That is, at every mistake Step 9 will remove at least a = 1/4
fraction of the total weight. As a result, if we make C mistakes then
our potential Φ decreases by at least (1 −)C :

1
2C∗ ≤ Φ ≤ Φ0 · (1 −)C =

3
4

C
· n

and so C ≤ C∗+log2 n
log2 (4/3)

.

Now, there is nothing too special about 1/2, except that it is a
convenient number. We could instead keep it a “penalty parame-
ter” ∈ (0, 1). This gives the following variant of the MWU:

MWU Algorithm
Theorem 60. There is a (deterministic) algorithm (Algorithm 25) such
that

C(T) ≤ C∗(T) log2(1/) + log2 n
log2

2
1+

.

Moreover, this holds even when T = .

140 comp45270: randomised and advanced algorithms

Algorithm 25: Multiplicative Weights
Updates algorithmInput: Penalty parameter ∈ (0, 1)

1: Set w1 , . . . , wn ← 1
2: for all 1 ≤ t ≤ T do
3: Receive v1,t , . . . , vn,t
4: Choose ut ← sign

∑n

i=1 wivi,t ≥ 1
2 ∑n

i=1 wi

▷ Weighted

majority
5: Receive ut ▷ Observe the truth
6: for all 1 ≤ i ≤ n do ▷ Penalise all mistaken experts

7: wi ←

wi if vi,t ̸= ut

wi otherwise.

Proof. Same proof as Theorem 59, but replacing 1/2 by in the
appropriate locations. Good practice: go through the details!

In this sense, lets us trade-off robustness (→ 1) for accu-
racy (→ 0). One can check that for = 1/2, we get back the
guarantees of Theorem 59, and that Check it!

• When → 0 and , we get

C∗(T) log2(1/) + log2 n
log2

2
1+

∼
→0+

log2
1

· C∗(T) + log2 n

retrieving the guarantees of Theorem 58 when C∗(T) = 0;

• if = 1 − with → 0+ , then

C∗(T) log2(1/) + log2 n
log2

2
1+

∼
→0+

2 · C∗(T) +
2

ln n

much better in terms of dependence51 on C∗, but much worse 51 Recall that a factor 2 there is op-
timal for deterministic algorithms,
by Fact 56.3.

with respect to the additive log2 n.

But can we do better? Our impossibility result (lower bound)
from Fact 56.3 applies to deterministic algorithms. The MWU al-
gorithm, which achieves this bound, is deterministic. If we allow
randomisation (and relax our goal a little to allow expected error, can
we circumvent this lower bound?

The answer is (of course?) yes. What is even better, this leads to
a simple and very natural algorithm!

Here again, the crucial observation is that Algorithm 25 takes a
“hard” majority: the algorithm will predict the same thing if the
weighted majority is 50.1% or if it is 100%. This sounds a little silly:
if our weighting of experts predicts essentially a coin toss, maybe
we should not treat it too condently? Maybe we should. . . toss a coin?

Observe that, in our binary setting where ut ∈ 0, 1, what the
algorithm does is equivalent to computing

p̃t :=
n

∑
i=1

wi

∑n
j=1 wj

1vi,t=1

lecture 12: learning from experts 141

Algorithm 26: Randomised Multiplica-
tive Weights Updates algorithmInput: Penalty parameter ∈ (0, 1)

1: Set w1, . . . ,wn ← 1
2: for all 1 ≤ t ≤ T do
3: Receive v1,t, . . . , vn,t
4: Draw I ∈ [n] according to the weights:

Pr[I = i] =
wi

∑n
i=1 wi

, i ∈ [n]

5: Choose ut ← vI,t ▷ One expert gets the vote
6: Receive ut ▷ Observe the truth
7: for all 1 ≤ i ≤ n do ▷ Penalise all mistaken experts

8: wi ←

wi if vi,t ̸= ut
wi otherwise.

and setting ut ∼ Bern(p̃t). But phrasing it this way makes it easier
to generalise to more complicated predictions than binary, and also
can be more efcient to implement. Can you see why?

MWU Algorithm
Theorem 61. There is a (randomised) algorithm (Algorithm 26) such that

E [C(T)] ≤ C∗(T) ln(1/) + ln n
1 −

.

Moreover, this holds even when T = .

Proof. Denote by Ft the fraction of the total weight that is on
“wrong experts” at time step t; that is, with the notation of the
proof of Theorem 59,

Ft =
Wwrong

t
Wt

∈ [0, 1], 1 ≤ t ≤ T

Since we are choosing which decision to make by sampling an
expert according to the weights, the probability to make a mistake
at time t is exactly Ft ; and so, by linearity of expectation,

E [C(T)] =
T

∑
t=1

Ft . (78)

Following as in the previous proofs a potential argument, we again
choose as potential function Φ the total weight of the experts:

Φt := Wt =
n

∑
i=1

wi,t .

We again have Φ0 = n, and Φ ≥ C∗
(the best expert makes

only C∗ mistakes, and so its weight at the end is C∗
). Now, Step 8

penalises the wrong experts at every step: in the previous theorems,
we only kept track of this when our algorithm made a mistake,
since this is all we had a handle on52 But now, we can: regardless 52 Namely, all we could say is that “at

least half of the weight was on wrong
experts” when we made a mistake. The
rest of the time, we had no way to
relate changes in the total weight to
the total number of mistakes C.

of whether our algorithm did make an actual mistake or not, at
every time step the weight on wrong experts is directly related to
the probability to have made a mistake.

142 comp45270: randomised and advanced algorithms

That is, at every time step 1 ≤ t ≤ T, we have

Wt+1 = · FtWt + (1− Ft)Wt

= (1− (1−)Ft) ·Wt

and so we have Viewed under the lens of our potential
function argument, this corresponds
to a decrease by a factor = t =
(1−)Ft which is not a constant, but
depends on t.

Φ = WT = W0

T

∏
t=1

(1− (1−)Ft) =
T

∏
t=1

(1− (1−)Ft) (79)

of, taking logarithms and recalling that W0 = Φ0 = n,

lnΦ = ln n+
T

∑
t=1

ln(1− (1−)Ft) (80)

This is promising, but we need to relate this to the expected num-
ber of errors E[C(T)], which by Eq. (78) is ∑T

t=1 Ft – not the much
worse-looking expression above. Recalling the “life-saver” inequal-
ity

ln(1+ x) ≤ x, x > −1

along with lnΦ ≥ C∗ ln , we obtain

C∗ ln ≤ lnΦ ≤ ln n− (1−)
T

∑
t=1

Ft (81)

Since ∑T
t=1 Ft = E[C(T)], reorganising the inequality above gives

E[C(T)] ≤ C∗ ln(1/) + ln n
1−

as claimed.

Figure 21: Comparison of the two
terms from Theorems 60 and 61: in
orange, 1

1− , and in blue, 1
ln 2

1+

.

Don’t let yourself get fooled by the change of logarithm basis
between Theorems 60 and 61: the new bound is always better – up
to exactly that factor 2, as → 1! (Except, of course, that it is only
in expectation).

Going further: for more on this, and connections to online
learning and learning theory, see the (excellent) lecture notes
by Daniel Hsu, available at https://www.cs.columbia.edu/
~djhsu/coms6998-f17/notes.pdf.

