
Lecture 11: Learning and testing probability distribu-
tions

In all we have done so far in this unit, we have assumed that the
input was deterministic: the algorithm is randomised, yes, but the
input itself is xed, and arbitrary.

In this lecture, we (somewhat) change this. What we have is
access to a sequence of independent, identically distributed (i.i.d.)
data points, coming from an unknown probability distribution p:

x1 , . . . , xn ∼ p

and what we want to do is to learn something about this p. Put differ-
ently:

The input is not the i.i.d. sequence (x1 , . . . , xn): the input is p,
and x1 , . . . , xn is how we get to access this input.

We will make very few assumptions about this unknown proba-
bility distribution p: except that it is over a known discrete domain
X of size X  = k.

To illustrate this, here is a histogram, corresponding to the
counts from n = 3665 i.i.d. draws from some unknown proba- Presumably i.i.d.

bility distribution p over X = 1, 2, . . . , 49 of size k = 49. They
correspond to a number drawn, every week from 1982 to 2018, from
Canada’s “Lotto 6/49”: Here are some questions we may want to

Figure 19: Counts for each of the
k = 49 possible numbers among the
n = 3665 draws. What is distribution
p does this correspond to? (Data from
the Kaggle “Lotto 649” dataset.)

120 comp45270: randomised and advanced algorithms

answer about p:

• What is it? That is, can we learn the whole unknown probability
distribution?

• What are some of its characteristics? That is, can we learn some
“simple” parameter f (p), such as its mean, entropy, variance?

• Does it satisfy some specic property? That is, can we test if p sat-
ises some requirement we care about? For instance, in the case
of the lotto numbers above, “is p consistent with the distribution
of the minimum of 6 independent uniform random numbers in
1, 2, . . . , 49?”

Intuitively, we can think of the rst as learning ≈ k values about p,
the second as learning one value, and the last one as learning one
bit. So presumably, they should be in decreasing order of “complex-
ity,” for whatever notion of “complexity” we dene.

What is the notion of complexity? Our algorithms, as mentioned
about, can only access the input p through queries which give inde- Think of n as the size of the dataset

you need to collect, or generate, or buy
in order for your algorithm to succeed.
In the case of the lotto example, the
number of observations is limited:
there is only one lotto every week, we
cannot choose n to be as large as we
want.

pendent, identically distributed samples from p. We will of course care
about the running time of the algorithms, but our main objective
will be to minimise the number n of queries we make.

What is the randomness? Since what we feed to the algorithm, the
sequence of samples x1, . . . , xn, is random, there will always be
some probability our algorithm’s output is wrong. That is, now,
when we discuss expectations and probabilities, it will be over
(1) the randomness of the algorithm itself, as usual, but also (2) the
randomness in drawing x1, . . . , xn from the unknown p.

What are the parameters? Of course, the domain size, k, is a key
parameter of the problem. But we have at least two others: rst, the
probability of failure, : we want the algorithm to be correct about
p most of the time. The other will be a distance parameter,  > 0: we
will get back to this soon, as its meaning depends on which of the
three problems we are interested in. But overall, our goal will be:

Find the smallest value n = n(k, , ) for which an algorithm
can solve the learning, estimation, or testing task we care about
with distance parameter  and failure probability at most .

Some notation A probability distribution over X can be identi-
ed to its probability mass function (pmf), which is a function
p : X → [0, 1] such that ∑x∈X p(x) = 1. Accordingly, the probability
mass that p assigns to a subset43 S ⊆ X is p(S) = ∑x∈S p(x) = 43 As we only consider discrete do-

mains, we ignore issues of measur-
ability, etc. That is, we consider X
endowed with the counting measure,
so every set is measurable. What is
discussed here generalises to continu-
ous probability distributions, but with
annoying technical details.

Prx∼p[x ∈ S]. Finally, (X) denotes the set of all probability distri-
butions over our domain X .

lecture 11: learning and testing probability distributions 121

Distance between probability distributions

To dene what it means to learn a probability distribution, or even
how far two probability distributions over the same domain X are,
we need a notion of distance. Ideally, one which makes “sense”:
(1) a metric would be nice (to be able to use the triangle inequality
when needed), (2) a bounded metric would be even nicer (to be able
to understand a value such as 0.1 without having to normalise
or think twice), (3) a bounded metric with a simple and meaningful
interpretation would be best.

This leads us to the the notion of distance we will be concerned
about, the total variation distance (also known as statistical distance).

Denition 49.1 (Total variation distance). The total variation distance
between two probability distributions p, q ∈ (X) is given by

dTV(p, q) = sup
S⊆X

(p(S) − q(S)) .

Given a subset C ⊆ (X) of distributions, we further dene the
distance from p ∈ (X) to C as dTV(p, C) := infq∈C dTV(p, q),
and will say that p is -far from C if dTV(p, C) > .

One can check that dTV denes a metric on (X), and takes val- Check it!

ues in [0, 1]. Moreover, the total variation distance exhibits several
important properties, among which one of the most important is its
immunity to post-processing:

Fact 49.1 (Data Processing Inequality). Suppose X and Y are inde-
pendent random variables with distributions p and q, and let f be any
(possibly randomized) function independent of X , Y. Then the probability
distributions p f and q f of f (X) and f (Y) satisfy

dTV


p f , q f


≤ dTV(p, q) .

That is, postprocessing cannot increase the total variation distance.

What this says is, paraphrasing, that post-processing two ran-
dom variables the same way cannot “make them statistically far-
ther.”

Interestingly, total variation distance also has a very natural
interpretation in terms of indistinguishability:

Lemma 49.1 (Pearson–Neyman). Any (possibly randomized) algorithm
which distinguishes between p and q from a single sample must have
Type I (false positive) and Type-II (false negative) errors satisfying

Type I+ Type II ≥ 1 − dTV(p, q)

Moreover, this is achieved by the test which outputs “q” if, and only if,
the sample belongs to the “Scheffé set” S∗ :=  x : q(x) > p(x) .

You can ignore the proof in a rst
read, it is just here for completeness.
What matters is the lemma itself.

122 comp45270: randomised and advanced algorithms

Proof. Fix any test A distinguishing between two distributions
p and q, given a single observation. Letting  and  denote the
Type I and Type-II errors of A, we have

 +  = Pr
p,R

[A(X , R) = 1] + Pr
q,R

[A(X , R) = 0]

= ER [Prp [A(X , R) = 1]] + ER [Prq [A(X , R) = 0]]

= ER [Prp [A(X , R) = 1] + Pr
q
[A(X , R) = 0]]

where we denote by R the internal randomness of A. Since, for
any xed realization r of this randomness R, the resulting test
A(·, r) is deterministic, we can dene for any r the acceptance region
SA,r :=  x : A(x, r) = 1 , and write

 +  = ER [Prp [X ∈ SA,R] + Pr
q
[X /∈ SA,R]]

= 1 + ER [p(SA,R) − q(SA,R)]

≥ 1 + inf
S
(p(S) − q(S))

= 1 − sup
S

(q(S) − p(S))

= 1 − dTV(p, q) ,

as claimed. Finally, it is immediate from the denition of total vari-
ation distance that the proposed test satises Type I + Type II =

1 + p(S∗) − q(S∗) = 1 − dTV(p, q).

Here is one way to interpret this lemma:

Alice and Bob play a game, where they both know two prob-
ability distributions p, q. Alice starts by tossing a fair coin,
and does not show the outcome to Bob: if it is Heads, then she
draws x ∼ p; if it is Tails, she draws x ∼ q. Then she shows the
value of x to Bob, who must guess if the coin toss was Heads.
Clearly, just by random guessing, Bob can win the game with
probability 1/2. What the lemma says is that he can do better:
there is a strategy for him to win with probability

Pr[Bob wins] =
1
2
+

dTV(p, q)
2

and, moreover, this is the best possible.

One more (very useful) fact about total variation distance: it is
just ℓ1 distance in disguise!

Fact 49.2 (Scheffé’s Lemma). For any two p, q ∈ (k),

dTV(p, q) =
1
2 ∑

x∈X
p(x) − q(x) = 1

2
∥p − q∥1 (66)

that is, “total variation is half the ℓ1 distance between pmfs.”

lecture 11: learning and testing probability distributions 123

This fact, which you will prove during the tutorial, turns out
to be a very useful connection: if nothing else, ℓp norms are well
studied, and this will allow us to use our arsenal of geometric in-
equalities — Hölder, Cauchy–Schwarz, and monotonicity of ℓp
norms, to name a few.

The case of a coin (k = 2)

With the necessary background in hand, we can look at our rst
question: forget for now about k ≫ 1, let us focus on the simplest,
most basic case, k = 2: you are given a coin, and it may be biased.

The learning task can be then rephrased as follows:

How many times n do you need to ip the coin to learn its
true bias p to accuracy ±, and be correct with probability at
least 1− ?

Should it be. . .

• n = O


1



times?

• n = O


1
2


times?

• n = O


1
2
log 1




times?

• n = O

1
 log

1



times?

Well, actually, we can get something more rened than any of the
bounds above! If we are given a promise on the unknown bias p,
then we can get the following:

Theorem 50. Suppose we are promised that the true bias p of the coin
satises 0 ≤ p < q ≤ 1

2 , for some known value q. Then estimating the
bias of the coin to an additive , with probability at least 1− , can be done
with n = O


q
2
log 1




i.i.d. samples. (Moreover, this is optimal.)

Proof. This follows from a Chernoff bound, using the empirical
estimate

p̂ :=
1
n

n

∑
i=1

xi

where x1, . . . , xn ∼ Bern(p). Note that a Hoeffding bound would
not give you the dependence on q. (The lower bound, i.e., proof of
optimality, is beyond the scope of this lecture.)

As a remark, the assumption that q ∈ (0, 1/2] is without loss
of generality: if instead we were promised that q < p ≤ 1 with
q ∈ (1/2, 1), then we could ip the coin ips (!) by looking at
x′i := 1 − xi instead, and estimate the bias p′ := 1 − p, which
satises 0 ≤ p′ < 1 − q ≤ 1/2. Clearly, estimating p′ to ± is
equivalent to estimate p to ±.

124 comp45270: randomised and advanced algorithms

Corollary 50.1. Estimating the bias of a coin to an additive , with prob-
ability at least 1− , can be done with n = O


1
2
log 1




i.i.d. samples.

(Moreover, this is optimal.)

This follows from applying the above theorem setting q = 1/2;
alternatively, the upper bound can be directly proven using the
Hoeffding bound. Try it!

This is if we want to learn the bias of an unknown coin. What if
we just want to test if it is biased? That is, distinguish between the
case where (1) the coin is Heads with probability exactly 1/2 (fair
coin), or probability 1/2±Ω() (biased coin)? How many times n
would we have to toss the coin, if we wanted our diagnostic to be
correct with probability at least 1− ?

• n = O


1



log 1




times?

• n = O


1
2


log 1




times?

• n = O


1
2
log 1




times?

• n = O

1
 log

1



times?

As it turns out. . . testing whether the coin is biased or fair is basi-
cally as hard as learning the bias of the coin:

Theorem 51. Testing whether the bias of a coin is 1/2 or at least 1/2+ ,
with probability at least 1− , can be done with n = O


1
2
log 1




i.i.d.

samples. (Moreover, this is optimal.)

This is a little underwhelming, since one can literally do this
by learning the bias up to 

2 .
44 And that provides a lot more infor- 44 Can you see how?

mation! So is there anything to be gained (except maybe constant
factors) if we only want to test tthe bias of the coin? As it turns out,
yes. . . but not always. Not when testing if a coin is fair or biased:
but when testing if the coin is very biased or extremely biased, then
yes.

Theorem 52. For any 0 <  ≤ 1/2 and  ∈ (0, 1], testing whether
the bias of a coin is at most  or at least (1+ ), with probability at least
1− , can be done with n = O


1
2

log 1



i.i.d. samples.

Again, this is not very useful when  = Ω(1): however, for van-
ishing , this is much better than what learning the bias to an addi-

tive ± 1
2 would give, which by Corollary 50.1 is n = O


1

22
log 1




.

Theorem 52 can be proven by a Chernoff bound, specically
the version given in Theorem 14 applied to the same empirical
estimator p̂. But rather than proving it, let us give a small sketch of
why we could expect this statement to be true, to get some intuition
(and remember the result). If the true bias p is roughly Θ(), then
we expect to see Tails most of the time, and Heads a Θ() fraction
of the tosses. That is, in every chunk of 1/2 tosses, we expect to

lecture 11: learning and testing probability distributions 125

see a Heads with probability either at most 1/2 (if p ≤ ) or at
least (1+ )/2 (if p ≥ (1+ )). But by Theorem 51 (ignoring  for
simplicity), this takes O


1/2


chunks – so O


1/(2)


coin tosses

in total.
And this makes sense! Things should become easier in the “highly

biased” regime. With a similar analysis, one can show that dis-
tinguishing between bias p = 0 and bias p ≥  takes only
n = O(1/ log(1/)) coin tosses. And this is easy to interpret:
in one case, you never see a Heads, and in the other, you will see one
after ≈ 1/ coin tosses. What is really hard (and requires more coin
tosses) is when p ≈ 1/2, and you have to distinguish between “a
lot of Heads” and “a lot of Heads, but slightly more.”

Learning and testing beyond coins

This is all well and good, but we often have to consider data over
domains of size k ≫ 2. The lotto example above, for instance, was
for k = 49; and that’s only for one number: if one considers all 6
draws in a single ticket of that Canadian lotto, that’s a domain of
size k = 496 = 13, 841, 287, 201.

If we were given an algorithm to generate random permutations
and we wanted to test whether its output was truly uniform (on the
space of all permutations of, say, size 8), then we would be looking
at a space of size 16! = 209, 22, 789, 888, 000.

If we wanted to estimate the entropy of a dataset of 8-character
passwords made of lower and uppercase letters, digits, and special
characters $%#&!?_−, then k = (70)8 = 576, 480, 100, 000, 000.

Domain sizes grow quite fast, and in most settings k is huge.

If we cannot assume structure in the data, then we have to hope
for very sample-efcient algorithms.

Learning

In learning (in total variation distance),45 our goal is to design an 45 One can dene learning with respect
to other notions of distances: e.g.,
Kullback–Leibler divergence, or
ℓ distance. Here we focus on the
standard, nice, total variation.

algorithm A which, given n i.i.d. samples from p and parameters
,  ∈ (0, 1], outputs p such that

Pr[dTV(p, p) > ] ≤  (67)

that is, p is close to p, with high probability. The probability is
taken, again, over both the samples x1, . . . , xn ∼ p and the random-
ness of the algorithm A.

How many samples n would we have to take, if we wanted the
output p to be -close to the true p with probability at least 1− ?

• n = O

k2
 log 1




?

• n = O


k
2
log 1




?

126 comp45270: randomised and advanced algorithms

• n = O


k+log 1


2


?

• n = O


k2+log 1


2


?

As we will see, the answer is not entirely obvious, even though the
algorithm A is.

First idea: using what we saw We want to estimate all k probabilities
p1, . . . ,pk to get p1, . . . , pk such that

1
2

k

∑
i=1

pi − pi ≤  .

It would be enough to estimate each individual pi to an additive
2
k .

46 To make sure we learn all k of them, we will learn each with 46 Ignore for now the fact that doing so,
we may not have ∑k

i=1 pi = 1: we can
normalise afterwards.

error failure 
k and take a union bound.

The total cost, from Corollary 50.1, is then

n = O


1
(/k)2

log
1

(/k)


= O


k2

2
log

k



. (68)

That’s something, but that has a more-than-quadratic dependence on
this giant parameter k.

But we can do better! Another idea would be to learn each pi to
a multiplicative factor (1± 2), instead of an additive ± 2

k . If we
assume that pi ≥ 

k for all 1 ≤ i ≤ k, for instance, then a Chernoff
bound (along with a union bound) tell us that we can the empirical
estimates p̂1, satisfy

(1− 2)pi ≤ pi ≤ (1+ 2)pi, for all 1 ≤ i ≤ k

with probability at least 1− , for

n = O


k
3

log
k



(69)

and then
1
2

k

∑
i=1

pi − pi ≤
1
2

k

∑
i=1

2pi =  ,

since ∑k
i=1 pi = 1. Moreover, we can get rid of that assumption on

mini pi, losing only constant factors in the nal bound. (⋆) Can you see how? Hint: “mix” p
with uniform, and learn

p′ = (1− 

2
)p+



2
uk

instead, where uk is the uniform
distribution on X .

But we can do better! One of the two bounds above has a (near)
quadratic dependence on k but a quadratic dependence on 1/,
the other is (near) linear in k but has a cubic dependence on 1/,
and both have an extra logarithmic factor in k because of a union
bound. This does not “feel” right, and indeed it is not:

Theorem 53. Learning an unknown distribution p ∈ (k) to total
variation distance  (with success probability 1− ) can be done with

n = O


k+ log 1



2



i.i.d. samples. (Moreover, this is optimal.)

lecture 11: learning and testing probability distributions 127

We will only prove the upper bound statement (not the lower
bound showing this sample complexity is optimal), but it is worth
noting that we have k + log(1/), not k log(1/): this is perhaps
surprising, as k log(1/) is what the median trick would give us.

Proof of Theorem 53. Consider the empirical distribution p obtained
by drawing n independent samples x1 , . . . , xn from the underlying
distribution p ∈ ([k]):

p(i) = 1
n

n

∑
j=1

1xj=i , i ∈ [k] (70)

This denes a valid probability distribution (i.e., p ∈ (k)), and
moreover can be computed efciently, in time O(k + n log n).

Recalling the denition of total variation distance (Denition 49.1),
the key observation is that we have dTV(p, p) >  if, and only if,
there exists a subset S ⊆ [k] such that p(S) > p(S) + . There are
only 2k subsets (actually 2k − 2) to consider, so we will make sure
our estimate is accurate for each subset, taking a union bound over
all 2k of them.

Fix any S ⊆ [k]. We have

p(S) = ∑
i∈S

p(i) (70)
=

1
n ∑

i∈S

n

∑
j=1

1xj=i

and so, letting Xj := ∑i∈S 1xj=i for j ∈ [n], we have p(S) =

1
n ∑n

j=1 Xj where the Xj’s are i.i.d. Bernoulli random variables with
parameter p(S). By a Hoeffding bound,

Pr[p(S) > p(S) + ] = Pr


1
n

n

∑
j=1

Xj > E


1
n

n

∑
j=1

Xj


+ 


≤ e−22n

and therefore Pr[p(S) > p(S) + ] ≤ 
2k

as long as

n ≥ k ln 2 + log(1/)
22

(71)

A union bound over these 2k possible sets S concludes the proof:

Pr[∃S ⊆ [k] s.t. p(S) > p(S) + ] ≤ 2k · 

2k
=  .

This proof is a little magical, and crucially relies on the deni-
tion of total variation distance as a supremum over subsets. One
can also prove the statement using the equivalent characterisation
(from Fact 49.2) as ℓ1 distance. We will only prove it for constant ,
as the full version requires a tool (McDiarmid’s inequality) we have
not seen in this class.

Alternative proof of Theorem 53. Consider the empirical distribution
p from n i.i.d. samples dened in (70).

128 comp45270: randomised and advanced algorithms

First, we bound the expected total variation distance between p
and p, by using ℓ2 distance as a proxy:

E [dTV(p, p)] =
1
2
E [∥p − p∥1] =

1
2

k

∑
i=1

E [p(i) − p(i)]

≤ 1
2

k

∑
i=1


E [(p(i) − p(i))2]

the last inequality by Jensen. But since, for every i ∈ [k], np(i)
follows a Bin(n, p(i)) distribution, we have

E

(p(i) − p(i))2


=

1
n2 Var[np(i)] = 1

n
p(i)(1 − p(i))

from which

E [dTV(p, p)] ≤
1

2
√
n

k

∑
i=1


p(i) ≤ 1

2


k
n

the last inequality this time by Cauchy–Schwarz. Therefore, for
n ≥ 25k

2
we have E [dTV(p, p)] ≤ 

10 .
We can then conclude by Markov’s inequality, establishing that

Pr[dTV(p, p) ≥ ] ≤ 1
10

.

(⋆) A nal (and side) remark: this last proof actually estab-
lishes a slightly stronger result, namely, that the sample complexity
n can be expressed as n = O


∥p∥1/2/2


, where ∥p∥1/2 =

∑k
i=1


p(i)

2
is the “ 1

2 -norm” of the unknown distribution p. This is (1) not examinable, and (2) not
a norm.

Testing

As we just saw, we can learn the whole probability distribution p to
accuracy  using O(k/2) samples. What if we only wanted to test
if p had some important property? For instance, if p = q, where
q ∈ (k) is some known reference distribution?

Specically, we want to solve the following problem: This question is called “identity
testing” in the distribution testing
literature.

Give an algorithm A which takes parameters ,  ∈ (0, 1]
and n samples from p, and:

• If p = q, then Pr[A outputs yes] ≥ 1 − ;

• If dTV(p, q) > , then Pr[A outputs no] ≥ 1 − 

(if 0 < dTV(p, q) ≤ , then A is off the hook and can output
whatever).

Why do we care? For instance, someone may hand you an algo-
rithm claiming it samples a uniformly random permutation; or the
implementation of a hash family H, claiming its output h(x) (over
the choice of h ∼ H) is uniformly distributed for each x; or you

lecture 11: learning and testing probability distributions 129

may have an algorithm running really well on uniformly random
data, but very poorly on very skewed data – and you want to test
these claims, or if your dataset is uniform enough for your fast
algorithm.

Figure 20: Histogram of 3,665 draws
of the “bonus number” in Canada’s
6/49 lotto, each draw being a number
in 1, 2, . . . , 49. Is the distribution
uniform? Or is the lottery not fair?

So you have a reference distribution q ∈ (k) in mind. The rst
thing we will do is simplify the problem, and assume that q is not
any distribution, but the uniform distribution uk over X . This will This is the uniformity testing question, a

special case of identity testing.make our life easier. And while this seems like a big simplication,
it turns out it is not! That is, any algorithm for uniformity testing
(the reference is uk) can be used as a blackbox to solve the identity
testing (the reference is any q), via a reduction:

Theorem 54 (Identity to uniformity reduction). Suppose there is an
algorithm A for uniformity testing, which takes n = n(k, , ) i.i.d.
samples from the unknown distribution. Then there is an algorithm A ′

for identity testing over a domain of size k to any xed q ∈ (k), which
takes n = n(4k, /4, ) i.i.d. samples from the unknown distribution.
Moreover, A ′ is efcient if A is.

We will not prove this theorem here, but this essentially says that
while uniformity and identity testing, they are basically equivalent
(up to constant factors).

Now, all we need to solve is the uniformity testing problem: given
n i.i.d. samples from an unknown p over X , decide whether p =

uk , or dTV(p, uk) >  (and be correct with probability at least
1 − ). Let’s say  = 1/3. How many samples n would we have to
take to solve this question?

• n = O


k
2


?

• n = O
√

k
2


?

• n = O


1
2


?

• n = O


log k
2


?

In what follows, we will assume  = 1/3, since we can boost this to
any 1 −  by a “standard majority vote” losing only an O(log(1/)
factor in the number of samples n. Exercise: write down the details!

130 comp45270: randomised and advanced algorithms

A baseline: if we can learn, we can test. The rst claim is that the
sample complexity of learning is an upper bound on that of testing:
that is, one can always to do the following.

• Learn p to total variation distance 
2 to obtain p such that

dTV(p, p) ≤ 
2 with probability at least 2/3;

• Check (without taking any more samples) if dTV(p, uk) ≤ 
2 ;

• Output yes if it is the case, no otherwise.

Since total variation distance is a metric, it satises the triangle
inequality: so

• If p = uk , then dTV(p, p) ≤ 
2 (with probability at least 2/3);

• If dTV(p, uk) > , then by the triangle inequality

 < dTV(p, p) + dTV(p, uk)

but by our learning guarantee the rst term is at most /2 (with
probability at least 2/3), so the second must be more than /2.

This simple argument tells us that whatever we end up getting,
we should do no worse than n = O(k/2): since that is what the
learning approach will get us.

But we can do better! Alright, we can do n = O(k) by learning:
but again, here we only aim for one bit of information. As it turns
out, this allows us to do signicantly better in terms of sample
complexity:

Theorem 55. Testing uniformity of an unknown distribution p ∈ (k)
to total variation distance  (with success probability 2/3) can be done
with

n = O

√
k

2



i.i.d. samples, using Algorithm 21. (Moreover, this is optimal for constant
success probability.)

In terms of dependence on k, this is a quadratic improvement
over learning! Before giving (part of) the proof, you may wonder
where this

√
k comes from: at a high level, it comes from something

we have seen before, the Birthday Paradox. Consider the distribution Why
√
k? Birthday Paradox.

p which is uniform on an arbitrary subset of k/2 elements: it is
easy to see that it is at total variation distance 1/2 from uk. But
unless we take n = Ω(

√
k) samples from p, all we see is a sequence

on unique elements from the domain, with zero collisions: which is
entirely, and absolutely consistent with what we would see under
the uniform distribution, too!

We will only show here how to derive

a (suboptimal) bound n = O
√

k/4

.(Partial) proof of Theorem 55. This idea that collisions are important

to test whether p is uniform is actually quite important, and the
basis behind Algorithm 21. Namely, we will use the following facts:

lecture 11: learning and testing probability distributions 131

Algorithm 21: Collision-Based
Uniformity TesterInput: Multiset of n i.i.d. samples x1, . . . , xn ∈ X , parameters  ∈

(0, 1] and k = X 
1: Set τ ← 1+22

k
2: Compute ▷ O(n) time if X is known

Z =
1
(n2)

∑
1≤s<t≤n

1xs=xt =
1
(n2)

∑
j∈X


Nj
2



where Nj ← ∑n
t=1 1xt=j.

3: if Z ≥ τ then return no ▷ Not uniform
4: else return yes ▷ Uniform

the rst is what while TV distance is basically ℓ1 distance between
pmfs, the ℓ2 distance is a good proxy for total variation distance:

dTV(p,uk) =
1
2
∥p− uk∥1 ≤

√
k
2

∥p− uk∥2 (72)

the inequality being Cauchy–Schwarz. What this means is that

• if dTV(p, uk) > , then ∥p − uk∥22 > 42/k; while

• if dTV(p, uk) = 0 then ∥p − uk∥22 = 0 too.

So it is sufcient to test with respect to ℓ2 distance. What does that
buy us? We have the very convenient fact, specic to the distance to
the uniform distribution: for any distribution p over X ,

∥p − uk∥22 =
k

∑
i=1


p(i) − 1

k

2
=

k

∑
i=1

p(i)2 − 1
k
= ∥p∥22 −

1
k
, (73)

so combining the two we get that dTV(p, uk) >  implies ∥p∥22 >

(1 + 42)/k.

Remark 55.1. We have seen this quantity ∥p∥22 before! It is com-
monly known as the collision probability of p, due to the following It is easy to see, from Eq. (73), that

among all probability distributions
over a given support size k the col-
lision probability is minimised for
the uniform distribution: indeed,
∥p∥22 = 1

k + ∥p− uk∥22 ≥ 1
k .

fact: if X,Y are i.i.d. random variables distributed according to p,
then

Pr[X = Y] = ∑
i∈X

Pr[X = i,Y = i] = ∑
i∈X

p(i)2 = ∥p∥22 (74)

In view of Eq. (73), a very natural idea is to estimate ∥p∥22,
in order to distinguish between (i) ∥p∥22 = 1/k (uniform) and
(ii) ∥p∥22 > (1+ 42)/k (-far from uniform). How to do that? We
just saw that the probability that two independent samples from p
take the same value (a “collision”) is exactly ∥p∥22. Thus, an obvious
approach is to take n samples x1, . . . , xn, count the number of pairs
that show a collision, and use that as an estimator Z for ∥p∥22: Sanity check: why not just look at n/2

(independent) pairs of samples, and
use them to estimate Pr[X = Y]?Z =

1
(n2)

∑
1≤s<t≤n

1xs=xt . (75)

By the above, E[Z] = ∥p∥22. If we threshold Z somewhere between
(i) and (ii), at say

τ :=
1+ 22

k

132 comp45270: randomised and advanced algorithms

we should be able to distinguish between our two cases and get a
valid tester. But how large must n be for this to work?

Intuitively, we expect the test to work as long as the standard
deviation of Z (the “noise”) is smaller than the gap between the
expectations in our two cases (the “signal”); that is,


Var[Z] ≪ E[Z] =

42

k
(76)

as this is the condition for the random uctuations of our statistic Z
not to “cross” our threshold too often and lead to a wrong answer.

To make this quantitative, we can use Chebyshev’s inequality,
which requires us to bound Var[Z]. This is where things get tricky,
since Z is the sum of (n2) random variables which are not pairwise
independent.47 47 Namely, the summands 1Xs=Xt

in the denition of Z are positively
correlated:

Cov(1Xs=Xt,1Xs′=Xt′ ) ≥ 0

and are only independent if s, s′, t, t′

are all distinct.

We will only show here to derive a (suboptimal) bound n =

O
√

k/4

:

Var[Z] = E

Z2


−E [Z]2

=
1

(n2)
2 ∑
1≤s<t≤n

∑
1≤s′<t′≤n

E

1Xs=Xt1Xs′=Xt′ 


− ∥p∥42

To handle this last sum despite the lack of independence of the
summands, we will break it in 3 groups depending on the cardinal-
ity of s, t, s′, t′, which can be either 4 (all indices are distinct), 3
(one index is common to the two pairs), or 2 (both pairs of indices
are the same).

• In the rst case, we have independence of the two indicator
random variables, and

E

1Xs=Xt1Xs′=Xt′ 


= E


1Xs=Xt


E

1Xs′=Xt′ 


= ∥p∥42.

• In the third case, the two indicator random variables are the
same, and since 12

 = 1 we get

E

1Xs=Xt1Xs′=Xt′ 


= E


1Xs=Xt


= ∥p∥22.

• The second case is the messiest one; still, one can verify that in
this case 1Xs=Xt1Xs′=Xt′  is 1 if, and only if, the three distinct

samples corresponding to the 3 distinct indices among s, t, s′, t′

take the same value, from which

E

1Xs=Xt1Xs′=Xt′ 


= ∥p∥33.

It remains to count how many summands of each type we have.
Clearly, we have exactly (n2) summands of the third type; it is also
not too hard to see that we have (n2)(

n−2
2) = 6(n4) summands of the

rst, and 6(n3) of the second. (As a sanity check, 6(n4) + 6(n3) + (n2) =

(n2)
2, so all our summands are accounted for.)

lecture 11: learning and testing probability distributions 133

Getting back to our variance computation, this yields

Var[Z] =
1

(n2)
2


6

n
4


∥p∥42 + 6


n
3


∥p∥33 +


n
2


∥p∥22


− ∥p∥42

=
1

(n2)
2


6

n
4


−


n
2

2

∥p∥42 + 6


n
3


∥p∥33 +


n
2


∥p∥22



(77)

≤ 4
n
∥p∥33 +

4
n2

∥p∥22

≤ 4
n
E [Z]3/2 +

4
n2

E [Z]

rst using that 6(n4) < (n2)
2 to discard a negative term, then that

n ≥ 2 to get a simpler-looking upper bound on binomial coef-
cients, and nally writing ∥p∥3 ≤ ∥p∥2 by monotonicity of ℓp
norms.

• In the case when p = uk (often called the completeness case),
we need to control the probability that Z crosses our threshold
τ := 1+22

k , that is

Pr[Z ≥ τ] = Pr

Z ≥ (1 + 22)E [Z]


≤ Pr


Z ≥ (1 + 2)E [Z]



• in the “far” case (often called the soundness case), we want to
control

Pr[Z < τ] ≤ Pr

Z <

(1 − 2)(1 + 42)
k


≤ Pr


Z < (1 − 2)E [Z]



using rst that (1 − 2)(1 + 42) ≥ 1 + 22 (for  ≤ 1/2), and
then the fact that in the “far” case E [Z] > 1+42

k .

To control our probability of error in both cases, it is thus suf-
cient to upper bound Pr


Z − E [Z] ≥ 2E [Z]


; by Chebyshev’s

inequality (Theorem 11), this is at most

Pr

Z − E [Z] ≥ 2E [Z]


≤ Var[Z]

4E [Z]2

≤ 4

4nE [Z]1/2
+

4
4n2E [Z]

≤ 4
√
k

4n
+

4k
4n2

which is at most 1/3, as desired, for n ≥ 13
√
k

4
. (For the third

inequality, we relied on the fact that E [Z] = ∥p∥22 ≥ 1/k (cf.
Remark 55.1).)

The algorithm can be shown to work even for n = O(
√
k/2),

but this require a much more careful variance analysis. As mentioned
above, this 2/3 can be boosted to 1 − , for sample complexity

O
√

k log(1/)
2


.

134 comp45270: randomised and advanced algorithms

Yet we can do better! To conclude this lecture: we can do even bet-
ter! The actual, optimal sample complexity of uniformity testing has
been pinpointed,48 and it is (perhaps surprisingly) a bit strange. 48 Ilias Diakonikolas, Themis

Gouleakis, John Peebles, and Eric
Price. Sample-optimal identity testing
with high probability. In ICALP, vol-
ume 107 of LIPIcs, pages 41:1–41:14.
Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2018

Theorem 56. Testing uniformity of an unknown distribution p ∈ (k)
to total variation distance  (with success probability 1− ) can be done
with

n = O


k log(1/) + log(1/)

2



i.i.d. samples. (Moreover, this is optimal.)

The proof is outside the scope of this lecture, but note the rather
strange dependence on ! This is quite useful for very, very small .

A concluding remark. We may be tempted to consider a more ro-
bust version of testing: return yes when dTV(p,uk) ≤ 1, and
no when dTV(p,uk) > 2, for two arbitrary input parameters
0 ≤ 1 < 2 ≤ 1. Unfortunately, this turns out to be a much harder

problem, which (even when 1, 2 = Θ(1)), requires n = Θ


k
log k



samples!49 49 Gregory Valiant and Paul Valiant.
Estimating the unseen: An n/ log n-
sample estimator for entropy and
support size, shown optimal via
new clts. In Symposium on Theory of
Computing Conference, STOC’11, pages
685–694, 2011

