
Lecture 10: Linear Programming and Randomised Round-
ing

“Brand new LP just dropped!”

Over your previous years and courses, you have seen a range of
powerful algorithm design techniques with which to attack algo-
rithmic problems. Once you have formulated the task you want to
solve, you have by now an array of tools to try and solve it: greedy
algorithms, divide-and-conquer, dynamic programming. . . Linear
Programming (LP for short) is another one, very powerful. We will
only scratch the surface here, but what it does is quite simple to
state:

Maximize a linear function subject to linear inequality con-
straints on variables x1 , . . . , xn of interest.

In its most general form, this can be rephrased as follows: You can do minimisation tasks instead
of maximisation, of course. Can you
see how?maximise c⊺x

subject to Ax ≤ b x ≥ 0

where the inequalities are to be taken coordinate-wise; x ∈ Rn is
the set of variables (encoding the solution), and c ∈ Rn , A ∈ Rm×n ,
and b ∈ Rm encode the task to be solved: c the objective function,
and A, b the constraints. This may look a little daunting in this
form, so here is a less compressed version:

maximise
n

∑
i=1

ci xi

subject to
n

∑
i=1

Aji xi ≤ bj , 1 ≤ j ≤ m

xi ≥ 0, 1 ≤ i ≤ n

We will see examples through the chapter, but here are the key
things to keep in mind regarding Linear Programming:

110 comp45270: randomised and advanced algorithms

• LP is P-complete: every problem that has a polynomial-time
algorithm can be solved by (some) linear program.

• LPs can be solved efciently in theory: every linear program
can be solved (to arbitrary precision) in time polynomial in
n,m (or, more precisely, in the size of the representation of
A, b, c, and desired accuracy.)

• LPs can be solved efciently in practice: there are actual
algorithms which solve LPs very quickly, and you can use
them.

• There is a very rich theory on Linear Programming, enough to
ll a whole course: we will not touch on most of it.

For instance, COMP4530/5530:
Discrete Optimisation. Consider taking
that course!

So, for the rest of this chapter, whenever we end up with an LP
(on a polynomial number of variables n and constraints m), we will
simply wave a magic wand and say “this can be efciently solved to
get an optimal solution,” without caring too much about how.

LPs are very powerful, and a wonderful arrow in our algorithmic
quiver, allowing us in principle to solve in a systematic way every
problem in P.42 The issue, of course, is that often we want to solve 42 This is not saying we should. There

may be faster algorithms than writing
and solving the corresponding LP!

problems that are not known to be in P: problems which, by deni-
tion, we do not know how to express as an LP with a polynomial
number of variables and constraints. But we would still like to solve
these approximately! Can LPs still help somehow?

Specically, as in the chapter on streaming (but for different rea-
sons), given a hard computational task T we would like to obtain
an α-approximation to an optimal solution to T , for some approxi-
mation factor 0 < α ≤ 1: that is, giving an instance I of T , we want
to output a solution S = S(I) whose value satises For maximisation problems. For

minimisation, that would be opt(I) ≤
val(S) ≤ α · opt(I), for α ≥ 1.

α · opt(I) ≤ val(S) ≤ opt(I) (61)

(with high probability, or in expectation, if our algorithm is ran-
domised), where opt(I) denotes the optimal value: the best achiev-
able by any solution for instance I.

Let’s forget about LPs.

One standard approach is to rst, essentially, shrug and formulate
our problem as something which is not an LP, but instead includes
some stronger constraints that are not linear. That is, instead of
constraints on our variables like xi ≥ 0 we allow constraints of the
form “xi must be an integer.” (Most often, xi ∈ 0, 1.)

Here is an example, for a problem that is, actually, in P, one we
have seen before: st-Min-CUT. To interpret this: we have V+ E
variables. The xe’s indicate whether edge e is part of the cut, while

lecture 10: linear programming and randomised rounding 111

maximise − ∑
e∈E

cexe

subject to

ys = 0

yt = 1

yv ≤ yu + xe, ∀e = (u, v) ∈ E

xe, yv ∈ 0, 1 ∀e ∈ E, v ∈ V

Figure 13: Min-CUT, on an directed
graph G = (V, E) with edge weights
c : E → R+ and source and sink
vertices s, t ∈ V, formulated as an ILP.

the yv’s indicate whether vertex v is in the same connected compo-
nent as the sink t. The goal is to select values for the variables in
order to minimise the weight of the cut, ∑e∈E cexe. So if we could
solve this optimally, we would have a solution to our st-Min-CUT
instance!

As we will see, switching from LPs to ILPs comes at a signicant
advantage: we can encode many more problems as Integer Linear
Programs (ILPs), including NP-Hard ones. This also comes at a Integer Linear Program (ILP)

signicant cost: contrary to LPs, we just don’t know how to solve
ILPs efciently in general!

So what is the point of all this? We know how to solve LPs very
fast, but they may not capture the problems we care to solve. ILPs
might, but we don’t know how to solve them efciently. This is
even more dire given the example above: we have very efcient
algorithms for st-Min-CUT. But now that we formulated Min-
CUT as an ILP, we just. . . don’t know how to solve it that way?

Let’s not forget about LPs.

Here comes the key insight: once we have formulated a problem
as an ILP, we can relax its constraints to convert it into an LP which “LP Relaxation”

we then can solve efciently. This gives us a solution to a different
problem (since we changed the constraints), but sometimes, if we
are lucky, from this solution to the relaxed problem we can extract a
solution to the original problem, and still can say something inter-
esting about its value (quality).

Relaxing the problem basically means converting all the “hard”
integer constraints into continuous, linear ones: e.g., for the Min-
CUT problem, relaxing the ILP above yields the LP given in Fig. 14.
We can then solve this, giving us a solution SLP to our problem. We
then have the nice, “obvious” fact:

Fact 45.1. Let optILP be the optimal value of a solution to an ILP (max-
imisation problem), and optLP be the optimal value of a solution to its LP
relaxation. Then

optILP ≤ optLP .

(For a minimisation problem, the inequality is reversed.)

112 comp45270: randomised and advanced algorithms

maximise − ∑
e∈E

ce xe

subject to

ys = 0

yt = 1

yv ≤ yu + xe , ∀e = (u, v) ∈ E

xe , yv ∈ [0, 1] ∀e ∈ E, v ∈ V

Figure 14: The LP relaxation to the
previous Min-CUT ILP relaxation.

Of course, this will not in general be a solution to the original
problem (here, st-Min-CUT), because, well, what does it mean for
a vertex to have yv = 0.5786? Which side of the cut is vertex v?

Rounding! The next key insight is that we can often extract a solu-
tion to the ILP from the (optimal) solution to the LP. Now, we will
have to lose something in the process: either the solution is only a Otherwise, we would know how to

solve the ILP! Possibly proving P=NP
along the way.

valid solution with high probability (with small probability, some
of the constraints will be violated), or the value of the resulting
solution is not quite optimal. Here, we will focus on the latter. Go-
ing back to our Min-CUT example: we solved the LP relaxation,
getting an optimal solution

(x∗ , y∗) ∈ [0, 1] E+V 

to the LP, with value optLP. We want to get a valid solution to our
graph problem, so getting a solution y ∈ 0, 1V  from this for
which, hopefully, val(y) ≈ optLP.

A very natural idea: let’s round the coordinates of y∗! Rounding
things in [0, 1] will give us things in 0, 1, and that seems to t
the bill. This works for some problems, and is called deterministic
rounding. The hard part, however, is then to be able to argue any-
thing about val(y): for Min-CUT for instance, if all coordinates of
y∗ are say 0.50001 (except of course ys), then we round them all to
1, and we include all vertices except s in our cut. Maybe not a good
idea. Check your understanding: why are

we looking at y, and not x (say, setting
xe to 1 with probability x∗e)?

But what about randomised rounding then? One issue with the
above rounding is that we had a deterministic threshold, 1/2, which
did not allow us to say much about the result, and in particular
did not let us leverage any guarantee provided by the LP we just
solved. So, deterministic threshold: not very useful. Maybe we can
pick our threshold randomly then?

Algorithm 19: Randomised rounding
for the LP relaxation of Min-CUT.1: Pick τ in (0, 1) uniformly at random.

2: for all v ∈ V do
3: Set yv = 1 if y∗v > τ, 0 otherwise

4: return y.

lecture 10: linear programming and randomised rounding 113

That’s all. Does it work? Clearly, this returns a valid cut, as y ∈
0, 1V with ys = 0, yt = 1. Can we say anything about the
(expected) value of the ? As it turns out, yes! Using the LP we
solved as a guide.

Theorem 46. The cut y returned by Algorithm 19 satises E [val(y)] =
optILP.

Proof. By linearity of expectation,

E [val(y)] = ∑
e∈E

ceE [1e is cut] = ∑
e=(u,v)∈E

ce Pr[yu = 0, yv = 1]

We want to relate this to ∑e∈E ce x∗e , since this is what we know is
the optimal value of the LP. But, for any e = (u, v) ∈ E, using the
third constraint of the LP, yv − yu ≤ x∗e , and so

Pr[yu = 0, yv = 1] = Pr[y∗u ≤ τ < y∗v] ≤ x∗e

from which

E [val(y)] ≤ ∑
e=(u,v)∈E

ce x∗e = −optLP ≤ −optILP

the last inequality from Fact 45.1. In expectation, the solution we
get is at least as good as the minimum cut value: since it cannot be
better (no valid cut can be better than the minimum cut!), it is the
minimum cut value.

This is nice! But we used a big hammer (ILP, LP relaxation, then
randomised rounding) in order to solve a problem we already knew
how to solve deterministically via Max-Flow, and it’s not even clear
the new approach is faster. This was very good for the sake of
illustrating the ideas, but surely, there has to be more compelling?
To see one, let us turn to a bona de NP-Hard problem, Max-SAT.

Approximation algorithm for Max-SAT

In the maximum satisability problem (Max-SAT), we have n Boolean
variables x1 , . . . , xn ∈ 0, 1, grouped into m clauses C1 , . . . , Cm .
Each clause is a disjunction of the variables, that is, of the form

Cj = xi1  ¬xi2  · · ·  xiℓ

(a logical OR of literals, where a literal is either a variable xi or its
negation ¬xi). A clause is satised if it evaluates to 1, that is, if at
least one of the literals in the clause is 1. The Max-SAT problem
asks, given such a formula ϕ = (C1 , . . . , Cm), to assign values to
all n variables in order to maximise the number of satised clauses,
i.e., All we are going to talk about

generalises to the weighted ver-
sion, where clause Cj has a weight
wj ≥ 0 and the goal is to maximise
∑m

j=1 wj1Cj is satised . Check it!

valϕ(x1, . . . , xn) =
m

∑
j=1

1Cj is satised

Without loss of generality, we assume that (1) all m clauses are
distinct, (2) xi and ¬xi do not appear both in any given clause (as

114 comp45270: randomised and advanced algorithms

this makes it automatically satised), and (3) each literal appears
at most once in each clause (no repetition, as they are useless). The
length of a clause Cj is the number of literals in the clause, denoted
ℓj = Cj.

Fact 46.1. Max-SAT is NP-Hard. (Even deciding whether opt(ϕ) = m
is NP-Complete.)

But can we approximate opt(ϕ)? As it turns out, getting some
approximation is not too difcult:

Theorem 47. The “obvious” randomised algorithm which sets each
variable xi independently and uniformly at random gives, in expectation, a
1
2 -approximation for Max-SAT.

Proof. Consider a xed clause Cj. The probability that Cj is not
satised is the probability to set every single one of the ℓj literals
the wrong way, which is

1

2ℓj

and so, by linearity of expectation, and as ℓj ≥ 1 for all 1 ≤ j ≤ m,

E

valϕ(x)


=

m

∑
j=1


1− 1

2ℓj


≥ 1

2
m ≥ 1

2
opt(ϕ) . (62)

proving the result.

Interestingly, one nice feature is that this gives a better guaran-
tee for “long clauses”, those for which ℓj ≥ 2. For instance, for
Max-E3SAT, where each clause has exactly 3 literals, we get a 7

8 -
approximation (since 1− 1/2ℓj = 7

8 for every j)!
Again, this is ne, but (1) a (1/2)-approximation is not that

exciting, and (2) there is no LP in there! Now that the warmup
is over, let us formulate Max-SAT as an ILP. Besides the n vari-
ables y1, . . . , yn (corresponding directly to the n Boolean variables
x1, . . . , xn), we will have m additional variables, one per clause,
where zj indicates whether Cj is satised: We then need to show

maximise
m

∑
j=1

zj

subject to

∑
i:xi∈Cj

yi + ∑
i:¬xi∈Cj

(1− yi) ≥ zj ∀1 ≤ j ≤ m

yi ∈ 0, 1 ∀1 ≤ i ≤ n

zj ∈ 0, 1 ∀1 ≤ j ≤ m

Figure 15: Max-SAT, formulated as an
ILP.

the following:

Lemma 47.1. The optimal value of the ILP is equal to opt(ϕ).

lecture 10: linear programming and randomised rounding 115

Sketch. To check: if x ∈ 0, 1n is an optimal solution to the Max-
SAT problem on input ϕ = (C1, . . . ,Cm), then one can extract from
it a valid solution to the ILP, with the same value. Conversely, from
an optimal solution to the ILP, one can obtain a solution to Max-
SAT with the same value.

As before, we don’t know how to solve this: so we go for the
LP relaxation. After solving (optimally) this LP relaxation in time

maximise
m

∑
j=1

zj

subject to

∑
i :xi∈Cj

yi + ∑
i :¬xi∈Cj

(1 − yi) ≥ zj ∀1 ≤ j ≤ m

0 ≤ yi ≤ 1 ∀1 ≤ i ≤ n

0 ≤ zj ≤ 1 ∀1 ≤ j ≤ m

Figure 16: Max-SAT, LP relaxation to
the above ILP.

polynomial in n and m, we get a solution y∗ , z∗ optimal for this
LP. How do we round this to get a (valid) solution x for the ILP
(equivalently, for Max-SAT) about which we can prove something?
Here’s another key idea: we want values xi ∈ 0, 1 but we are
given yi ∈ [0, 1]. The good thing is, there is a very natural interpre-
tation to values in [0, 1]: seeing them as probabilities. This suggests
the following randomised rounding scheme:

Algorithm 20: Randomised rounding
of the LP relaxation for Max-SAT.Input: Instance ϕ = (C1 , . . . , Cm) of Max-SAT on n variables

1: Solve the LP relaxation (Fig. 16), getting solution (y∗ , z∗).
2: for all 1 ≤ i ≤ n do
3: Set xi = 1 with probability y∗i , independently of others.

4: return x.

This is quite simple, and produces a valid assignment of the
Boolean variables x1 , . . . , xn . How well does it fare in terms of
clauses satised? As it turns out, not badly at all!

Theorem 48. The randomised rounding given in Algorithm 20 gives, in
expectation, a (1 − 1

e)-approximation for Max-SAT. 1− 1/e ≈ 0.632: better than 1/2!

Proof. As before, we need to use what the LP we solved did, as a
guide to analyse the expected value of our solution. What we can
write is

E

valϕ(x)


=

m

∑
j=1

Pr

Cj satised


=

m

∑
j=1


1− Pr


Cj not satised



By independence of our assignments of the xi’s, and since each
variable appears (negated or not) at most once per clause, we also

116 comp45270: randomised and advanced algorithms

have that, for every j,

Pr

Cj not satised


= ∏

i:xi∈Cj

Pr[xi = 0] · ∏
i:¬xi∈Cj

Pr[xi = 1]

= ∏
i:xi∈Cj

(1− y∗i) · ∏
i:¬xi∈Cj

y∗i (63)

This is a product, but what the LP gives us a handle on is a sum:
from the constraints, what we know is that, for every j,

∑
i:xi∈Cj

yi + ∑
i:¬xi∈Cj

(1− yi) ≥ zj

To relate products to sums (or, rather, to averages), one very handy
tool is the inequality of arithmetic and geometric means (AM–GM in-
equality): Another life-saver: the AM–GM

inequality.

Fact 48.1. For any a1, . . . , ak ≥ 0,

k
√
a1a2 · · · ak ≤

a1 + a2 + · · ·+ ak
k

Applying this to (63) gives us

Pr

Cj not satised


= ∏

i:xi∈Cj

(1− y∗i) · ∏
i:¬xi∈Cj

y∗i

≤

∑i:xi∈Cj

(1− y∗i) +∑i:¬xi∈Cj
y∗i

ℓj

ℓj

=


1−

∑i:xi∈Cj
y∗i +∑i:¬xi∈Cj

(1− y∗i)

ℓj

ℓj

≤

1−

z∗j
ℓj

ℓj

(By the LP constraint)

and so, recalling where we came from,

E

valϕ(x)


≥

m

∑
j=1


1−


1−

z∗j
ℓj

ℓj

 (64)

We are almost there! We want to relate this to what we know is the
optimal value of the LP, ∑m

j=1 z
∗
j . To do so, observe that for any

ℓ ≥ 1 the function

f (z) = 1−

1− z

ℓ

ℓ
, z ∈ [0, 1]

is concave, and as a result is above its linear interpolation (see Fig. 17): Exercise: prove it!

f (z) ≥

1−


1− 1

ℓ

ℓ

z, z ∈ [0, 1]

Using this, we nally get We invoke the “fact” that

sup
ℓ≥1


1− 1

ℓj

ℓj

= 1/e .

lecture 10: linear programming and randomised rounding 117

Figure 17: An illustration of the
inequality for ℓ = 2.

E

valϕ(x)


≥

m

∑
j=1


1−


1− 1

ℓj

ℓj

 · z∗j (65)

≥ inf
ℓ≥1


1−


1− 1

ℓ

ℓ

·

m

∑
j=1

z∗j

=


1− 1

e


optLP

≥

1− 1

e


optILP

concluding the proof.

Are we done? We started by showing a simple randomised ap-
proach giving an expected 1/2-approximation to Max-SAT. By
spending more time, effort, and relaxing (an ILP), we obtained
an efcient randomised algorithm, less simple but giving a better
guarantee: an expected 0.632-approximation. Can we do better?

Surprisingly, yes: we can get a 3/4-approximation, by combining
the two! This is quite unexpected, as combining two algorithms
will give a better result than both. The crucial insight is that, as
remarked before, the naive randomised approach fares very well on
long clauses. What about the LP-relaxation one? Roughly speaking,
its expected approximation guarantee on a clause of length ℓ j is


1 −


1 − 1

ℓ j

ℓ j



which is better for short clauses! (As you can see, for ℓ j = 1 this takes
value 1, for ℓ j = 2 it is 3/4. . .We may hope that choosing the best
of the two solutions (one better when clauses are typically long, the
other better when they are typically short) could be benecial.

Theorem 49. The “best-of-two” approach which runs both the naive

118 comp45270: randomised and advanced algorithms

randomised algorithm of Theorem 47 and the randomised rounding of The-
orem 48 gives, in expectation, a 3/4-approximation for Max-SAT.

Proof. The proof is quite simple: denote by x, x ′ the two solutions
returned. Then, since the max is at least the average,

E

max


valϕ(x), valϕ(x ′)


≥ 1

2
E

valϕ(x) + valϕ(x ′)



≥ 1
2

m

∑
j=1




1 − 1

2ℓ j


+


1 −


1 − 1

ℓ j

ℓ j

 · z∗j




(By (62) and (65))

≥ 1
2

m

∑
j=1




1 − 1

2ℓ j


+


1 −


1 − 1

ℓ j

ℓ j



 · z∗j

(as z∗j ≤ 1)

≥ 3
4

m

∑
j=1

z∗j (⋆)

≥ 3
4
optILP

where the inequality (⋆) follows from the (somewhat technical)
claim that, for every x ≥ 2 and for x = 1, we have (see Fig. 18)


1 − 1

2x


+


1 −


1 − 1

x

x
≥ 3

2
.

This concludes the proof, and the chapter.

Figure 18: An illustration of the last,
“magical” inequality. Note that it
does not hold for values in (1, 2),
but, thankfully, we only need it for
integers.

