
Lecture 1: Randomness, Probability, and Algorithms

Take a standard deck of 52 cards, with 13 ♠, 13 ♡, 13 ♢, and 13 ♣.

Shufe it (well), so that the order is completely (uniformly)1 ran- 1 People usually say “random” when
they mean uniformly random, and that
can be quite ambiguous. I’ll try not to.

dom. How many consecutive pairs of the same suit do you expect?

For instance,

4♡, 3♡, 8♣, 2♣, 3♠, 10♡, 8♢, 7♠, K♡, 5♢, 8♡, J♡, 9♣,

5♣, J♠, 2♡, Q♠, 2♠, 10♠, 6♠, 6♣, 5♡, 4♣, 9♠, Q♢, 8♠,

6♢, 10♢, 7♣, J♣, K♣, 4♢, K♢, K♠, A♢, A♠, A♣, 4♠, A♡,

3♣, 9♢, 3♢, J♢, 9♡, Q♡, Q♣, 2♢, 10♣, 5♠, 7♢, 6♡, 7♡

has 15 such consecutive pairs. Please check.

So. . . what’s the expected number of consecutive same-suit pairs

in a shufed deck?

Let’s try to estimate this:

1 import numpy as np

2 import random

3 deck = 13*[’S’, ’H’, ’D’, ’C’]

4 consecutives = []

5 for _ in range(50000):

6 shuffled_deck = random.sample(deck, len(deck));

7 consecutives += [np.sum([shuffled_deck[i] == shuffled_deck[i+1] for i

in range(len(deck)-1)])]

8 print("Empirical mean: %f" % np.mean(consecutives))

I ran it: this gave 11.98176. I ran it again: 12.0022. And these 50,000

attempts look roughly like this (Fig. 1):

1 import matplotlib.pyplot as plt

2 plt.hist(consecutives, density = True, bins=25, edgecolor=’k’);

3 plt.axvline(np.mean(consecutives), color=’r’, linestyle=’dashed’,

linewidth=2)

4 plt.show()

Looks like this expected number is something like 12. How do we Try to see what changes if you change
the number of cards in the deck
(for instance, 34 cards from each
suit instead of 13). Could you have
predicted it?

explain this?

Theorem 1. The expected number of consecutive same-suit pairs is 12.

Proof. “Linearity of expectation.” ∀i, Pr[Xi = Xi+1 ] =
13−1
52−1

One for the rainy days.

It’s raining, and all n students of the class come to the lecture with

an umbrella. They all leave it in front of the lecture hall. At the end

of the lecture, they leave the room in (uniformly) random order,

and crossing the door each takes the closest remaining umbrella. In

expectation, how many leave with their own umbrella?
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Figure 1: (Normalized) histogram of
the number of consecutive pairs of the
same suit, over 50, 000 trials. The red
dashed line is the empirical mean.

Theorem 2. The expected number of xed points in a uniformly random

permutation of {1, 2 . . . , n} is one.

What’s a randomized algorithm?

Randomized algorithms are algorithms whose behaviour does

not depend solely on the input. It also depends (in part) on random

choices or the values of a number of random bits.

So we can think of the algorithm A as taking an input x and

a string of uniformly random bits R ∈ {0, 1}∗. Now, since A is

randomised, this could mean several things:

1. The time τA(x; R) that A takes on input x is itself random, and

depends on the random bits R

2. The output A(x; R) of A on input x is random, and can be differ-

ent based on the random bits R

3. Something else (e.g., the amount of memory used by A could

depend on the random bits)

4. all, or any combination of the above

Typically, what we want is then analyze A on worst-case input x

and uniformly random R. The two things to keep in mind: (1) is the

output of A always correct? Is it correct with high probability (over

the choice of random bits R)? (2) is the running time of A always

bounded? Is it bounded with high probability, or in expectation

(over the choice of random bits R)? (⋆⋆) For those interested, for decision
problems this is related to complexity
classes ZPP, RP, and BPP. Think of that
last one as “randomized P.”

Las Vegas algorithms: the algorithm is always correct, but the running

time is only bounded in expectation.

Monte-Carlo algorithms: the algorithm is only correct with high proba-

bility, but the running time is bounded with probability one.

This is very abstract right now, so before moving to the subtan-

tial example of QuickSort (soon), here is an example:



lecture 1: randomness, probability, and algorithms 13

Given an (arbitrary) array of size n containing all numbers

from 1 to n, output the index of an even number.

Claim 2.1 (Bad news). Any deterministic algorithm for this task must

have worst-case time complexity Ω(n).

Claim 2.2 (Good news). There is a Las Vegas algorithm for this task

with expected time complexity O(1).

Claim 2.3 (Good news). There is a Monte Carlo algorithm for this task

with worst-case time complexity O(1), and probability of success 0.99.

Relation to other notions of analysis.

What you have focused so far in algorithms classes is worst-case

analysis: this quanties the worst possible behaviour of an algo-

rithm (its time complexity, or space complexity, usually), that is,

how badly it will do on the worst possible input you can give it. This is

very useful to know, since once you have gured that out then you

know that, no matter what, your algorithm cannot do worse than

that, even on the most adversarial situation. But there are other

types of analysis, less frequent and usually much harder to inter-

pret, that can be used: expected time analysis (when the algorithm

is randomized: this class), average time analysis (when the input it-

self comes from some known probability distribution: not now),

amortized analysis (when we use the algorithm repeatedly on a se-

quence of inputs, and look at the worst-case sequence of input for

the algorithm divided by the length of the sequence).

Summary: if τA(x) is the time taken by A on input x of size |x |

and Ak (x1 , . . . , xk ) corresponds to running the algorithm succes-

sively on inputs x1 , . . . , xk , then the time analyses discussed above

correspond to:

T(n) = max
x :|x |=n

τA(x) (Worst-case)

Texpected(n) = max
x :|x |=n

ER [τA(x; R)]

(Expected: A is randomized)

Taverage(n) = Ex [τA(x)] (Average-case: x is random)

Tamortized(n) = lim
k→∞

1

k
max

|x1 |=···=|xk |=n
τAk

(x1 , . . . , xk) (Amortized)

Again, you probably focused on the rst in previous studies, and in

this unit we will also consider the second.

But why?

Some of the reasons for using randomization:

• Quickly nding representative or relevant parts of the input (e.g.,

sampling data from a large dataset)
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• Avoid pathological corner cases

• Avoid predictable outcomes

• Allow for simpler or more efcient algorithms

• . . . Can you think of anything else?

Some drawbacks:

• The behaviour of the algorithm is, well, random. The output

might be, or the running time, or something else. Are you happy

with this non-deterministic behaviour?

• Where do you nd these “random bits” the algorithm needs? Any idea?

Analyzing Randomized Quicksort

Is this a Las Vegas or a Monte Carlo
algorithm?Remember QuickSort from your previous classes? It’s a very nice

comparison-based sorting algorithm, which works as follows: This

Algorithm 1: QuickSort
Require: Input array A of size n

1: if n ≤ 1 then return A

2: Select an index 1 ≤ i ≤ n, and let p ← A[i] be the pivot

3: Partition A into 3 subarrays: A1 (elements smaller than p), A2

(equal to p), and A3 (greater than p) ▷ O(n) time

4: Recursively call QuickSort on A1 and A3 to sort them

5: Merge the (sorted) A1, A2, A3 into A ▷ O(n) time

6: return A

is the prototypical example of a divide-and-conquer algorithm:

the only thing unspecied above is how to choose the pivot. And

this is very important: the time complexity of the whole algorithm

depends crucially on it!

The naive way to choose the pivot deterministically (just pick,

say, i = ⌈n/2⌉) is quite terrible, leading to a worst-case time com-

plexity of O(n2). Not so “quick.” A much more involved way to

do so, getting the median as pivot using linear-time selection does If you don’t remember what it is, that’s
alright – but it’s worth looking it up.give sorting in worst-case O(n log n) time: but now the algorithm

is very complicated, and not so fast in practice anymore.

But this is a class on randomized algorithm, so let’s do the ob-

vious randomized thing, and pick the pivot uniformly at random:

in Line 2, choose i uniformly at random in {1, 2, . . . , n}. This gives

us Randomized QuickSort. The proof of correctness is the same as

usual QuickSort, but what about the (expected) time complexity?

How fast is it?

Well, the expected time complexity T(n) satises the recurrence:

T(n) = E [T(|A1 |) + T(|A2 |)] + O(n) (1)

where the expectation is over the random choice of pivot in Line 2;

and T(1) = O(1).

Suppose for simplicity that all elements are distinct. Then, if pick Curious? See how to adapt the proof
below to the general case.
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pick as pivot the k-th largest element, nL = k − 1 and nR = n − k.

What is the probability to pick the k-th largest element as pivot? We

select the pivot uniformly at random, so that’s 1/n.

So we can rewrite (the cn is for the O(n) in (1), which comes

from the Divide and the Conquer steps):

T(n) = cn +
1

n

n

∑
k=1

(T(k − 1) + T(n − k))

= cn +
1

n

n−1

∑
k=0

T(k) +
1

n

n−1

∑
ℓ=0

T(ℓ)

That is,

T(n) = cn +
2

n

n−1

∑
k=0

T(k) (2)

Now, how do we solve this? Any idea?

First method: guess, and prove inductively. You know the drill.

Magically guess T(n) ≤ an log n, try to prove it by induction,

see it doesn’t quite work depending on which bound you use

for ∑n
k=1 k log k, maybe change your “magic guess” to T(n) ≤

an log n − bn to make it work (or get a better bound for the sum).

Second method: integrals are nicer than sums. Instead of solving Eq. (2)

directly, let’s instead compare this discrete relation to a (much nicer

to solve) differential equation. The idea is that often, “sums and

integrals are basically the same thing,”

Fact 2.1. Let f be a non-decreasing function. Then, for all n ≥ 0,

 n

0
f (x)dx ≤

n

∑
k=0

f (k) ≤
 n+1

1
f (x)dx

Let’s apply that here, and solve the functional equation We make a few implicit (reasonable)
assumptions on T here: which ones?

T(x) = cx+
2

x

 x

0
T(u)du, x > 0

Introducing the antiderivative F(x) =
 x
0 T(u)du, we can rewrite

this as

F′(x) = cx+
2

x
F(x) (3)

which is “easier” to solve,2 and will lead to T(x) = O(x log x) and 2 Check with an automated solver
like Mathematica rst: https://www.
wolframalpha.com/input?i=solve+F%

27%28x%29+%3D+c+x+%2B+2%2Fx+F%28x%

29+.

so T(n) = O(n log n). The point is that differential equations are

often much easier to solve than discrete recurrence relations.

(⋆⋆) How: dividing everything by x2, Eq. (3) becomes

F′(x)

x2
−

2

x3
F(x) =

c

x

but then, we can use that d
dx

F(x)
x2

= F′(x)
x2

− 2F(x)
x3

, so integrating we

get
F(x)

x2
= c ln x+ C
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for some constant C ∈ R, and so F(x) = cx2 ln x + Cx2. Then

f (x) = F′(x) = 2cx ln x+ (2C+ 1)x = O(x log x), and we are done.

What we have shown is the following:

Theorem 3. Randomized QuickSort has expected running time O(n log n). But still worst-case running time
O(n2).

What about the number of comparisons? Clearly, what we just

showed implies that the expected number of comparisons is also

O(n log n), but if that’s all we are interested in, could we have

proven it in a nicer way?

Theorem 4. The expected number of comparisons performed by Random-

ized QuickSort is O(n log n).

Proof. When we run QuickSort, all the comparisons at one level of

the recurrence are between the current pivot and all the other n− 1

elements, and we never compare two elements twice. So we could

try to solve the corresponding recurrence on the expected number

of comparisons C(n):

C(n) = E [C(|A1|) + C(|A2|)] + (n− 1) (4)

We could, but we will not. Instead, here’s a slightly nicer argument This is the same as for T(n), but with
an explicit constant instead of c.based on linearity of expectation.

Suppose for simplicity that all n elements are distinct and let us Intuitively, duplicate elements can
only make the expected number of
comparisons smaller. Can you argue
why?

denote them, in ranked order, by

a1 < a2 < a3 < · · · < an

(note that this is only for the analysis, and that ai is not necessar-

ily the element at index i of A: the array is generally not already

sorted!) For any two indices i < j, let Xij ∈ {0, 1} be the indica-

tor variable of whether Randomized QuickSort ever compares ai
and aj. Since the algorithm never compares twice the same two

elements, we have that the total number of comparisons is

X :=
n−1

∑
i=1

n

∑
j=i+1

Xij

and C(n) = E [X]. By linearity of expectation,

C(n) =
n−1

∑
i=1

n

∑
j=i+1

E


Xij



=
n−1

∑
i=1

n

∑
j=i+1

Pr


ai and aj are compared


So it boils down to understanding the probability Randomized

QuickSort ever compares two xed distinct elements of the array.

Suppose we are at the ℓ-th recursive step of the algorithm, with

ai, aj both in the current subarray of size nℓ, and we pick a pivot p:

• If ai < p < aj, then we will recurse on two disjoint subarrays,

one containing ai and the other aj, so that they will never be

compared (decision made!). This happens with probability
j−i−1
nℓ

.

• If p is either ai or aj, then they will be compared – since elements

are only compared to the pivot (decision made!). This happens

with probability 2
nℓ
.
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• Otherwise, they are not compared at this stage, but they both

end up in the same subarray the algorithm recurses on, so the

comparison could happen later on. This “no decision either way

yet” happens with probability 1−
j−i+1
nℓ

.

From the above, we have

Pr



ai and aj
are compared
at stage ℓ









Decision made
at stage ℓ



=

2
nℓ

j−i−1
nℓ

+ 2
nℓ

=
2

j − i + 1

Overall, we can write

Pr


ai and aj
are compared



=
∞

∑
ℓ=0

Pr



ai and aj
are compared
at stage ℓ









Decision made
at stage ℓ



Pr


Decision made
at stage ℓ



=
∞

∑
ℓ=0

2

j − i + 1
· Pr



Decision made
at stage ℓ



=
2

j − i + 1
,

the last line since probabilities sum to one. We are almost there:

remember that we are interested in C(n), which we now are able to

express as

C(n) =
n−1

∑
i=1

n

∑
j=i+1

2

j − i + 1
= 2

n−1

∑
i=1

n−i

∑
k=1

1

k + 1

This may not look so nice, but letting Hk = ∑
k
i=1

1
k ≤ ln k + 1

denote the k-th Harmonic number, we get

C(n) = 2
n−1

∑
i=1

(Hn−i+1 − 1) = 2
n

∑
i=2

(Hi − 1) ≤ 2
n

∑
i=2

ln i ≤ 2n ln n

(we even get an explicit upper bound, not just O(n log n)).

A few useful probabilistic facts

Let X be a random variable (r.v.) taking real values: for instance, in

R or N. We assume X has an expectation and a variance.3 A few 3 This is not necessarily always true!
Some random variables do not even
have a well-dened expectation.
For instance, the random variable
dened on Z by Pr[X = k ] = 1

C · 1
1+k2

with C = 1+ π cothπ (so that the
probabilities sum to 1) is well-dened,
but does not have an expectation since

∑k∈Z k · Pr[X = k ] is not dened (does
not converge).

useful things:

Fact 4.1. If X takes values in N = {0, 1, 2, . . . , },

E [X] =
∞

∑
n=0

nPr[X = n ] =
∞

∑
n=1

Pr[X ≥ n ]

To remember whether the sum in the last expression starts at

n = 0 or n = 1: either reprove it (a bit time-consuming), or take

X to be the “useless” random variable equal to 0 with probability

1. Then E [X] = 0, but ∑∞
n=0 Pr[X ≥ n ] = Pr[X ≥ 0 ] = 1. So we

shouldn’t have the term n = 0.

Fact 4.2. If X has a nite variance,

Var[X] = E



(X −E [X])2


= E



X2


−E [X]2
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As a direct consequence, Var[X] ≤ E


X2


(sometimes useful).

Lemma 4.1 (Jensen’s Inequality). If f : R → R is convex (and E [ f (X)]

is well-dened)

f (E [X]) ≤ E [ f (X)] .

For f concave, the inequality is reversed.

To remember the direction: check with f (x) = x2 (convex). The

variance is non-negative, so 0 ≤ Var[X] = E


X2


−E [X]2.

Fact 4.3 (Linearity of Expectation). For any X,Y and a, b ∈ R,

E [aX + bY] = aE [X] + bE [Y]

(We do not need X,Y to be independent!)

This extends to more random variables: for instance, E [∑n
i=1 Xi] =

∑
n
i=1 E [Xi]. (No independence needed!)

Fact 4.4 (Variance). For any X and a ∈ R,

Var[aX] = a2 Var[X] .

Moreover, if X,Y are independent,

Var[aX + bY] = a2 Var[X] + b2 Var[Y] .

More generally, if X1, . . . ,Xn are mutually independent (or,

weaker condition, pairwise independent: any two Xi,Xj with i ̸= j

are independent, but X1, . . . ,Xn as a whole might not be mutually

independent.), then

Var



n

∑
i=1

Xi



=
n

∑
i=1

Var[Xi]. (5)

The proof is not too hard: basically, since Var[X] = E


(X −E [X])2


,

consider E


(∑n
i=1(Xi −E [Xi]))

2


and expand the square, then use

linearity of expectation:

Var



n

∑
i=1

Xi



= E



n

∑
i=1

n

∑
j=1

(Xi −E [Xi])(Xj −E


Xj



)



= E



n

∑
i=1

(Xi −E [Xi])
2



+E



∑
i ̸=j

(Xi −E [Xi])(Xj −E


Xj



)



=
n

∑
i=1

E



(Xi −E [Xi])
2


+∑
i ̸=j

E


(Xi −E [Xi])(Xj −E


Xj



)


The rst term is exactly ∑
n
i=1 Var[Xi]; the second, by pairwise inde-

pendence, is 0, since E


(Xi −E [Xi])(Xj −E


Xj



)


= E [(Xi −E [Xi])]E


(Xj −E


Xj



)


=

0 · 0.

Now, a few very trivial-looking (but useful!) facts. Suppose X

takes values in {0, 1}, with Pr[X = 1 ] = p (this is a Bernoulli

random variable). Then
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• X2 = X (of course!), so E


X2


= E [X] = Pr[X = 1 ] = p

• That implies Var[X] = E


X2


− E [X]2 = p − p2 = p(1− p),

which is at most 1/4. Check it! x(1− x) ≤ 1/4 for x ∈ [0, 1],
and the maximum is at x = 1/2.

• That implies that for a Binomial X ∼ Bin(n, p), which is just the

sum of n independent, and identically distributed (i.i.d.) Bernoullis

with parameter p,

E [X ] = np, Var[X ] = np(1 − p) .

Finally, an indicator random variable (for some “event” E) is just a

Bernoulli random variable which is equal to 1 if the event occurs,

and 0 otherwise (so, Bernoulli with parameter Pr(E)). Usually

denoted 1E .


