
Post(pre)liminaries: What to know before we start

Algorithms

For a general refresher on “classical” algorithms, one cannot rec-
ommend enough Tim Roughgarden’s lecture series and textbook,
which comes with videos and programming assignments 55 An- 55 The textbooks are not free, but the

videos and resources can be found at
https://www.algorithmsilluminated.

org/.

other good reference book is Jeff Erickson’s (free) textbook, which
covers a lot of material and can be obtained on the author’s web-
site.56 56 Jeff Erickson. Algorithms. 2019

Make sure you are familiar with the denition and use of big-Oh
(asymptotic) notation: O(), Ω(), Θ(). This is, for instance, Chapter
2 of Tim Roughgarden’s book (volume 1).57 Below, we point out 57 We might encounter o() at some

point, even a couple paragraphs below,
but this one will be explained when
(or if) needed.

two particular topics the student may want to reacquaint them-
selves with.

Median in Linear Time. There is an algorithm, based on the median-
of-median divide-and-conquer approach, which computes the me-
dian of an array of n numbers in time O(n). For more on this, see,
Chapter 1.8 of Erickson’s textbook or Chapter 6 of Tim Rough-
garden’s book (volume 1). This is also a good occasion to practice
solving recurrence relations (with or without the Master Theorem).

Max-Flow and Min-Cut. This course assumes familiarity with algo-
rithms for Max Flow and Min-Cut (in particular in Chapter 5). For
a refresher, see, Chapters 10 and 11 of Erickson’s textbook.

(Some) discrete maths

The point of this section is not to be comprehensive, but to give
a few facts that you either should know; and, for most, be able to
prove. If some seem unfamiliar (or you would be at a loss trying
to establish them), it is alright! But please ask questions during the
class or on the course online forum, so that we can help you with
them (and related concepts). First, the factorial grows as n! = nΘ(n),
or, equivalently,

log n! = Θ(n log n) .

More precisely, Stirling’s approximation (harder to show) gives Stirling’s approximation

n! = (1+ o(1))
√
2πn

n
e

n
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where o(1) means “something that goes to 0 as n → .” From this,
you can deduce for instance that58 58 Exercise: check it!
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Other useful statements include that the n-th Harmonic number,
Hn = ∑n

k=1
1
k , is asymptotically Harmonic numbers

Hn = ln n+O(1)

while ∑n
k=1

1
k2 = O(1), since

n

∑
k=1

1
k2

≤


∑
k=1

1
k2

=
π2

6

(this one is actually quite difcult to show), and
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We will also take for granted the formula for geometric series: for
r ̸= 1,

n

∑
k=0

rk =
rn+1 − 1
r− 1

and so, for r < 1, ∑
k=0 r

k = 1
1−r . More complicated, it will be

helpful to know how to show, for r < 1, that



∑
k=1

krk =
r

(1− r)2

Try it as a (very much not obvious) exercise: if you are stuck, don’t
worry – but do ask how to do it!

To conclude this sample of things worth knowing or remember-
ing, recall the inequality of arithmetic and geometric means (AM-GM): AM-GM inequality
for any x1, . . . , xn ≥ 0,

(x1x2 · · · xn)1/n ≤ x1 + · · ·+ xn
n

and in particular, if a, b ≥ 0, then
√
ab ≤ a+b

2 .

Probability

First, some notation. Throughout, we’ll use

• Pr[ ] for probabilities

• E[] for expectations

• Var[] for variances

• X ∼ π to denote that a random variable (r.v.) has probability
distribution π
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so, for instance, Pr[X ≥ 5 ] is the probability that the random vari-
able X is at least 5 (assuming the probability distribution of X is
known or clear from context), while PrX∼π [X ≥ 5 ] or Prπ [X ≥ 5 ]
species in addition that X is distributed according to some proba-
bility distribution π.

Now, a probability distribution π over some set X is a beast that
satises a collection of mathematical axioms, which we will not
recall in detail here.59 When X is discrete (nite or countable), as 59 For a start, if we want to be precise,

it’s not “just” a set X , but a mea-
surable space (X ,Σ), where Σ is a
σ-algebra (a collection of subsets of X
closed under complement, countable
unions, and countable intersections).
We won’t go there, as in our case the
whole thing will be clear from context.

it will mostly be the case here, we can for our purposes think of a
probability distribution π as a non-negative function dened on
subsets of X , such that

π() = 0, π(X ) = 1

(the probability of “nothing” is 0, the probability of “everything”
is 1); and, for any countable collection of pairwise disjoints subsets
S1 , . . . , Sk , · · · ⊆ X ,

π(


k=1

Sk) =


∑
k=1

π(Sk)

where a set S ⊆ X is also called an event (so “the probabilities
of disjoint events add up”). In particular, if S, T are disjoint events
(S  T = ), then

π(S  T) = π(S) + π(T) .

More generally, if S, T are arbitrary (not necessarily disjoint), then60 60 Exercise: prove it using the previous
rule, applied to (1) S  T = (S \ T)  T
and (2) S = (S \ T)  (S  T).π(S  T) = π(S) + π(T)− π(S  T) .

When X is continuous, for instance R, and π is “well-behaved”
(almost always) we have similar properties, replacing sums (∑) with
integrals (


).

Random variables. A random variable (r.v.) X over domain X will
be specied by its probability distribution π, where, for any (mea-
surable) event S ⊆ X ,

π(S) = Pr[X ∈ S ]

In the discrete case, say, when X = 1, 2, . . . , n or X = N, we can
fully specify the probability distribution of X by its probability mass
function (pmf), writing

π(i) = Pr[X = i ] ,

and then (from the axioms above), we have π(S) = ∑i∈S π(i). For instance, “the probability
that X is an even number” is
π(0, 2, 4, 6, . . . ) = π(0) +

π(2) + π(4) + π(6) + . . .

Most of the time, we will deal with random variables taking
either integer or real values, that is, X ⊆ R. For such an r.v. X, we
dene the cumulative distribution function (cdf)

FX(t) = Pr[X ≤ t ], t ∈ R

which fully characterizes the distribution of the random variable
X. (If two r.v.’s have the same cdf, they have the same probability
distribution.)
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Indicator random variables An important specic case of random
variables are those “indicating an event” by taking a value in 0, 1:
that is, for an event A ⊆ X , we write 1A for the random variable
which is 1 if A happens, and 0 otherwise. As an example: say X is a
random variable uniformly distributed on 1, 2, 3, 4. Then

1X even

is equal to 1 if X = 2 or X = 4, and 0 if X = 1 or X = 3.

Independence. Two random variables X,Y are independent if

Pr[X ∈ S,Y ∈ T ] = Pr[X ∈ S ] · Pr[Y ∈ T ] ∀S, T .

This is equivalent to having

E[ f (X)g(Y)] = E[ f (X)]E[g(Y)]

for all functions f , g (whenever the expectations are well dened).
In particular, that implies that E[XY] = E[X]E[Y].

This extends to more than two r.v.’s in the “straightforward
way”: X1, . . . ,Xn are mutually independent (or just independent) if

Pr[X1 ∈ S,X2 ∈ S2, . . . ,Xn ∈ Sn ] =
n

∏
k=1

Pr[Xk ∈ Sk ] ∀S1, . . . , Sn .

This is equivalent to having

E


n

∏
k=1

fk(Xk)


=

n

∏
k=1

E[ fk(Xk)]

for all functions f1, . . . , fn (again, whenever the expectations are
well dened).

Bayes’ Rule, Conditional Expectation, and Law of Total Expectation.
Given two events A, B (and a probability distribution), the condi-
tional probability of A knowing B (or conditioned on B is given by

Pr[ A  B ] =
Pr[ A  B ]

Pr[ B ]
(Bayes’ Rule)

For instance, if X is a random variable uniform on 1, 2, . . . , 2n,
then the “probability that X is prime conditioned on X being even”
is

Pr[X prime  X even ] =
Pr[X is an even prime ]

Pr[X even ]
=

Pr[X = 2 ]
Pr[X ∈ 2, 4, 6, . . . , 2n ] =

1
2n

n · 1
2n

=
1
n

(note that 2 is the only even prime.)
This can be used to dene conditional expectations:61 for an event 61 We are not giving here a full formal

treatment of conditional expecta-
tions: that would require measure
theory and a lot more paper. See, e.g.,
MATH4069 at the University (or ask
after the class) if you’re curious.

A,

E[X  A ] = ∑
x∈X

x · Pr[X = x  A ] =
E[X1A]

Pr[ A ]

(this is for the discrete case: again, the continuous case is similar,
with


instead of ∑ and a bit of extra care.)
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We can even go one step further and dene conditional expec-
tations with respect to random variables, not events. Given two ran-
dom variables X,Y, we can write

E[X  Y ]

for the new random variable “X conditioned on Y.” We will not
dene it formally here, but this random variable corresponds to
“averaging over whatever randomness remains in X once you know
Y”, and satises a few important properties: the rst is the Law of
Total Expectation, Law of Total Expectation

E [E [ X  Y ]] = E [X ]

which basically states that “taking expectations step by step” gives
the same result as doing it in one go.

The other is that, whenever X and Y are independent then
knowing Y does not change anything about X, and so condition-
ing on Y still requires you to “average over all the randomness of
X”:

E [ X  Y ] = E [X ] (if X , Y independent)

The other extreme is when X is a deterministic function of Y. Then
knowing Y means there is no other randomness left at play, and
f (Y) acts like a constant (xed number) as far as the conditional
expectation is concerned:

E [ f (Y)  Y ] = f (Y) (for any function f )

For instance, E

Y2

 Y

= Y2; or, if X , Y are independent, com-

bining both facts above, E

Y2X

 Y

= Y2E [ X  Y ] = Y2E [X ].

Besides the above, conditional expectations basically behave like
“normal” expectations, but adding “ ·]” at the end.

Some probability distributions. For p ∈ (0, 1], the Geometric distri-
bution with parameter p, Geom(p), is the discrete distribution over
N = 1, 2, . . . , n, . . .  with probability mass function

π(k) = p(1 − p)k−1

for k ∈ N. It has expectation 1/p and variance (1 − p)/p2.
For λ ≥ 0, the Poisson distribution with parameter λ, Poi(λ), is

the discrete distribution over N  0 = 0, 1, 2, . . . , n, . . .  with
probability mass function

π(k) = e−λ λ
k

k!

for k ∈ N  0. It has expectation λ and variance λ.
For p ∈ [0, 1], the Bernoulli distribution with parameter p, Bern(p),

is the discrete distribution over 0, 1 with probability mass func-
tion

π(0) = 1 − p, π(1) = p

It has expectation p and variance p(1 − p).
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For integer n ≥ 1 and p ∈ [0, 1], the Binomial distribution
with parameters n and p, Bin(n, p), is the discrete distribution over
0, 1, 2, . . . , n with probability mass function

π(k) =

n
k


pk(1 − p)n−k

for 0 ≤ k ≤ n. It has expectation np and variance np(1 − p). The Bernoulli distribution is a
“baby” Binomial distribution
with n = 1.


